scholarly journals Seawater desalination with solar-energy-integrated vacuum membrane distillation system

2016 ◽  
Vol 7 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Fang Wang ◽  
Shixuan Wang ◽  
Jin Li ◽  
Dongsheng Xia ◽  
Jianshe Liu

This study designed and tested a novel type of solar-energy-integrated vacuum membrane distillation (VMD) system for seawater desalination under actual environmental conditions in Wuhan, China. The system consists of eight parts: a seawater tank, solar collector, solar cooker, inclined VMD evaporator, circulating water vacuum pump, heat exchanger, fresh water tank, and brine tank. Natural seawater was used as feed and a hydrophobic hollow-fiber membrane module was used to improve seawater desalination. The experiment was conducted during a typical summer day. Results showed that when the highest ambient temperature was 33 °C, the maximum value of the average solar intensity was 1,080 W/m2. The system was able to generate 36 kg (per m2 membrane module) distilled fresh water during 1 day (7:00 am until 6:00 pm), the retention rate was between 99.67 and 99.987%, and electrical conductivity was between 0.00276 and 0.0673 mS/cm. The average salt rejection was over 90%. The proposed VMD system shows favorable potential application in desalination of brackish waters or high-salt wastewater treatment, as well.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Adnan Alhathal Alanezi ◽  
H. Abdallah ◽  
E. El-Zanati ◽  
Adnan Ahmad ◽  
Adel O. Sharif

A new O-ring flat sheet membrane module design was used to investigate the performance of Vacuum Membrane Distillation (VMD) for water desalination using two commercial polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) flat sheet hydrophobic membranes. The design of the membrane module proved its applicability for achieving a high heat transfer coefficient of the order of 103 (W/m2 K) and a high Reynolds number (Re). VMD experiments were conducted to measure the heat and mass transfer coefficients within the membrane module. The effects of the process parameters, such as the feed temperature, feed flow rate, vacuum degree, and feed concentration, on the permeate flux have been investigated. The feed temperature, feed flow rate, and vacuum degree play an important role in enhancing the performance of the VMD process; therefore, optimizing all of these parameters is the best way to achieve a high permeate flux. The PTFE membrane showed better performance than the PVDF membrane in VMD desalination. The obtained water flux is relatively high compared to that reported in the literature, reaching 43.8 and 52.6 (kg/m2 h) for PVDF and PTFE, respectively. The salt rejection of NaCl was higher than 99% for both membranes.


2014 ◽  
Vol 2014 (0) ◽  
pp. _0711-1_-_0711-4_
Author(s):  
Shingo TERASHIMA ◽  
Hidechito HAYASHI ◽  
Tetsuya OKUMURA ◽  
Kei MATSUYAMA ◽  
Morihiro IRIE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document