scholarly journals Fouling analysis of polysulfone ultrafiltration membranes used for drinking water treatment

2011 ◽  
Vol 11 (6) ◽  
pp. 668-674 ◽  
Author(s):  
B. Q. Zhao ◽  
C. P. Huang ◽  
S. Y. Chen ◽  
D. S. Wang ◽  
T. Li ◽  
...  

Natural organic matter (NOM) plays a significant role in the fouling of ultrafiltration membranes in drinking water treatment processes. For a better understanding of the interaction between fractional components of NOM and polysulfone (PS) ultrafiltration membranes used for drinking water treatment, fouling and especially the physically irreversible fouling of natural organic matter were investigated. Resin fractionation, fluorescence excitation–emission matrix (EEM) spectroscopy, fourier transform infrared spectroscopy (FTIR), contact angle and a scanning electron microscope (SEM) were employed to identify the potential foulants. The results showed that humic acid and fulvic acid of small size were likely to permeate the membrane, while the hydrophobic fraction of humic and fulvic acid and aromatic proteins tended to be rejected and retained. Organic compounds such as proteins, humic substances, and polysaccharide-like materials, were all detected in the fouling layer. The physically irreversible fouling of the PS membrane seemed to be mainly attributed to the hydrophobic fraction of humic substances.

2013 ◽  
Vol 6 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A. Grefte ◽  
M. Dignum ◽  
E. R. Cornelissen ◽  
L. C. Rietveld

Abstract. To guarantee a good water quality at the customers tap, natural organic matter (NOM) should be (partly) removed during drinking water treatment. The objective of this research was to improve the biological stability of the produced water by incorporating anion exchange (IEX) for NOM removal. Different placement positions of IEX in the treatment lane (IEX positioned before coagulation, before ozonation or after slow sand filtration) and two IEX configurations (MIEX® and fluidized IEX (FIX)) were compared on water quality as well as costs. For this purpose the pre-treatment plant at Loenderveen and production plant Weesperkarspel of Waternet were used as a case study. Both, MIEX® and FIX were able to remove NOM (mainly the HS fraction) to a high extent. NOM removal can be done efficiently before ozonation and after slow sand filtration. The biological stability, in terms of assimilable organic carbon, biofilm formation rate and dissolved organic carbon, was improved by incorporating IEX for NOM removal. The operational costs were assumed to be directly dependent of the NOM removal rate and determined the difference between the IEX positions. The total costs for IEX for the three positions were approximately equal (0.0631 € m−3), however the savings on following treatment processes caused a cost reduction for the IEX positions before coagulation and before ozonation compared to IEX positioned after slow sand filtration. IEX positioned before ozonation was most cost effective and improved the biological stability of the treated water.


2011 ◽  
Vol 63 (10) ◽  
pp. 2427-2433 ◽  
Author(s):  
R. H. Peiris ◽  
H. Budman ◽  
C. Moresoli ◽  
R. L. Legge

Identifying the extent of humic acid (HA)-like and fulvic acid (FA)-like natural organic matter (NOM) present in natural water is important to assess disinfection by-product formation and fouling potential during drinking water treatment applications. However, the unique fluorescence properties related to HA-like NOM is masked by the fluorescence signals of the more abundant FA-like NOM. For this reason, it is not possible to accurately characterize HA-like and FA-like NOM components in a single water sample using direct fluorescence EEM analysis. A relatively simple approach is described here that demonstrates the feasibility of using a fluorescence excitation-emission matrix (EEM) approach for identifying HA-like and FA-like NOM fractions in water when used in combination with a series of pH adjustments and filtration steps. It is demonstrated that the fluorescence EEMs of HA-like and FA-like NOM fractions from the river water sample possessed different spectral properties. Fractionation of HA-like and FA-like NOM prior to fluorescence analysis is therefore proposed as a more reasonable approach.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 459-464 ◽  
Author(s):  
S. Chae

The aim of this study was to characterize and compare natural organic matter (NOM) removal and disinfection by-product (DBP) formation in the drinking water treatment train that can give valuable information, while optimizing the treatment process. In this study, the determination of the hydrophobic (HPO), transphilic (THP) and hydrophilic (HPI) NOM distribution was used in parallel with more related drinking water parameters to compare the selected waters. High-performance size-exclusion chromatography (HPSEC) was applied to evaluate the relative changes of molecular size distribution of NOM in different treatment steps and source waters. This showed that the quantity, speciation and activated carbon adsorption of DBPs could vary not only by water quality, but also by the distribution and properties of the organic molecules that comprise NOM.


Sign in / Sign up

Export Citation Format

Share Document