Spatial network generation tool for water distribution network design and performance analysis

2013 ◽  
Vol 13 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Nemanja Trifunović ◽  
Bharat Maharjan ◽  
Kalanithy Vairavamoorthy

The research presented in this paper aims at the support tool for generation of multiple networks with preset or randomised properties. To explore particular phenomena, water distribution analysis may require a coherent set of cases. Readily available in the literature are simple synthetic networks used for benchmarking, either real-life cases that are too diverse in size and configuration. The network generation tool (NGT) developed on the principles of graph theory connects any seed of nodes prepared in EPANET modelling software, by avoiding pipe crossings or unnecessary duplications. The pipe properties can be assigned by specifying a range of arbitrary lengths and diameters, by using coordinates to calculate the lengths, or by genetic algorithm optimisation of initial diameters. Equally, the nodal elevations and demands are arbitrarily assigned when not predefined in EPANET. Several sets of networks have been generated, up to 200 junctions. To test robustness of the tool, 13,000 layouts of a 50-junction seed have been generated using different settings. NGT has been proven to be capable of executing this task mostly within a few minutes, producing network layouts that resemble those from practice.

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 753
Author(s):  
Ina Vertommen ◽  
Karel van Laarhoven ◽  
Maria da Conceição Cunha

In this paper a scenario-based robust optimization approach is proposed to take demand uncertainty into account in the design of water distribution networks. This results in insight in the trade-off between costs and performance of different designs. Within the proposed approach the designer is able to choose the desired degree of risk aversion, and the performance of the design can be assessed based on the water demand effectively supplied under different scenarios. Both future water demand scenarios and scenarios based on historical records are considered. The approach is applied to the design of a real-life water distribution network supplying part of a city in the Netherlands. From the results the relation between costs and performance for different scenarios becomes evident: a more robust design requires higher design costs. Moreover, it is proven that numerical optimization helps finding better design solutions when compared to manual approaches. The developed approach allows water utilities to make informed choices about how much to invest in their infrastructure and how to design it in order to achieve a certain level of robustness.


2016 ◽  
Vol 17 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Erika Yesenia Avila-Melgar ◽  
Marco Antonio Cruz-Chávez ◽  
Beatriz Martinez-Bahena

In this paper, an evolutionary algorithm, called EA-WDND, is developed to optimize water distribution network design for real instances. The evolutionary algorithm uses the Epanet Solver which, while not an optimizer, helps to evaluate the operational constraints of mass conservation, energy conservation, pressure in nodes (nodal heads) of the network, and velocities of water in network pipes. Epanet is used by the EA-WDND to evaluate whether the looped network is operating properly. Consequently, the EA-WDND obtains feasible configurations of network design. The best configuration, which has the lowest cost and best performance according to defined constraints, is obtained by the EA-WDND. This configuration can be practically implemented in real life. In this paper, a methodology for using Epanet Solver with a parallel evolutionary algorithm is presented.


2011 ◽  
Vol 11 (4-5) ◽  
pp. 731-747 ◽  
Author(s):  
MASSIMILIANO CATTAFI ◽  
MARCO GAVANELLI ◽  
MADDALENA NONATO ◽  
STEFANO ALVISI ◽  
MARCO FRANCHINI

AbstractThis paper presents a new application of logic programming to a real-life problem in hydraulic engineering. The work is developed as a collaboration of computer scientists and hydraulic engineers, and applies Constraint Logic Programming to solve a hard combinatorial problem. This application deals with one aspect of the design of a water distribution network, i.e., the valve isolation system design. We take the formulation of the problem by Giustolisi and Savić (2008 Optimal design of isolation valve system for water distribution networks. InProceedings of the 10th Annual Water Distribution Systems Analysis Conference WDSA2008, J. Van Zyl, A. Ilemobade, and H. Jacobs, Eds.) and show how, thanks to constraint propagation, we can get better solutions than the best solution known in the literature for the Apulian distribution network. We believe that the area of the so-calledhydroinformaticscan benefit from the techniques developed in Constraint Logic Programming and possibly from other areas of logic programming, such as Answer Set Programming.


Author(s):  
Marianna D'Ercole ◽  
Maurizio Righetti ◽  
Gema Raspati ◽  
Paolo Bertola ◽  
Rita Maria Ugarelli

The management of existing water distribution system (WDS) is challenged by ageing of infrastructure, population growth, increasing of urbanization, climate change impacts and environmental pollution. Therefore, there is a need for integrated solutions that support decision makers to plan today, while taking into account the effect of these factors in the mid and long term. The paper is part of a more comprehensive project, where advanced hydraulic analysis for WDS is coupled with a dynamic resources input-output analysis model. The proposed modeling solution can be used to optimize the performance of a water supply system while considering also the energy consumption and consequently the environmental impacts. Therefore, as a support tool in the management of a water supply system also in the intervention planning. Here a possible application is presented for rehabilitation/replacement planning while maximizing the network mechanical reliability and minimizing risk of unsupplied demand and pressure deficit, under given economic constraints.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5204
Author(s):  
Valery Nkemeni ◽  
Fabien Mieyeville ◽  
Pierre Tsafack

Wireless Sensor Network (WSN) applications that favor more local computations and less communication can contribute to solving the problem of high power consumption and performance issues plaguing most centralized WSN applications. In this study, we present a fully distributed solution, where leaks are detected in a water distribution network via only local collaborations between a sensor node and its close neighbors, without the need for long-distance transmissions via several hops to a centralized fusion center. A complete approach that includes the design, simulation, and physical measurements, showing how distributed computing implemented via a distributed Kalman filter improves the accuracy of leak detection and the power consumption is presented. The results from the physical implementation show that distributed data fusion increases the accuracy of leak detection while preserving WSN lifetime.


Sign in / Sign up

Export Citation Format

Share Document