Haloacetic acid degradation by a biofilm in a simulated drinking water distribution system

2013 ◽  
Vol 13 (2) ◽  
pp. 447-461 ◽  
Author(s):  
C. Pluchon ◽  
J. B. Sérodes ◽  
C. Berthiaume ◽  
S. J. Charette ◽  
Y. Gilbert ◽  
...  

Haloacetic acids (HAAs) are disinfection by-products formed as a result of the reaction between chlorine and natural organic matter found in water. HAA concentrations have been observed to decrease at distribution system extremities. This decrease is associated with microbiological degradation by pipe wall biofilm. The objective of this study was to evaluate HAA degradation in a drinking water system in the presence of a biofilm and to identify the factors that influence this degradation. Degradation of dichloracetic acid (DCAA) and trichloroacetic acid (TCAA) was observed in a simulated distribution system. The results obtained showed that different parameters came into play simultaneously in the degradation of HAAs, including retention time, water temperature, biomass, composition of organic matter, and pipe diameter. Seasonal variations had a major effect on HAA degradation and biomass quantity was lower by 1 to 2 logs in the winter and spring compared with the fall. HAA removal decreased with increasingly large pipe diameters. The specific effects of each of these factors were difficult to isolate from each other owing to interactions.

1999 ◽  
Vol 33 (4) ◽  
pp. 1014-1026 ◽  
Author(s):  
Vincent Gauthier ◽  
Bernadette Gérard ◽  
Jean-Marie Portal ◽  
Jean-Claude Block ◽  
Dominique Gatel

2008 ◽  
Vol 8 (4) ◽  
pp. 421-426
Author(s):  
J. Menaia ◽  
M. Benoliel ◽  
A. Lopes ◽  
C. Neto ◽  
E. Ferreira ◽  
...  

Concerns arise from the possible occurrence of pathogens in drinking water pipe biofilms and storage tank sediments. In these studies, biofilm samples from pipes and sediments from storage tanks of the Lisbon drinking water distribution system were analyzed. Protein determinations and heterotrophic counts on pipe biofilm samples were used to assess the Lisbon network sessile colonization intensity and distribution. Indicator and pathogenic microorganisms were analyzed in pipe biofilm samples, as well as in storage tanks biofilm and sediments, by using cultural methods and PCR, to assess risks. Results have shown that the Lisbon network sessile colonization is relatively weak in intensity. In addition, no meaningful hazards were apparent for both the network biofilm and the storage tanks biofilm and sediments.


2009 ◽  
Vol 43 (20) ◽  
pp. 5005-5014 ◽  
Author(s):  
Jeffrey G. Szabo ◽  
Christopher A. Impellitteri ◽  
Shekar Govindaswamy ◽  
John S. Hall

2007 ◽  
Vol 2007 (1) ◽  
pp. 449-467
Author(s):  
Stacia L. Thompson ◽  
Elizabeth Casman ◽  
Paul Fischbeck ◽  
Mitchell J. Small ◽  
Jeanne M. VanBriesen

2017 ◽  
Vol 15 (6) ◽  
pp. 942-954 ◽  
Author(s):  
Parul Gulati ◽  
Moushumi Ghosh

Sphingomonas paucimobilis, an oligotroph, is well recognized for its potential for biofilm formation. The present study explored the biofilm forming ability of a strain isolated from municipal drinking water on plumbing materials. The intensity of biofilm formation of this strain on different plumbing materials was examined by using 1 × 1 cm2 pieces of six different pipe materials, i.e. polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), aluminium (Al), copper (Cu) and rubber (R) and observing by staining with the chemical chromophore, Calcofluor. To understand whether biofilm formation occurs under flow through conditions, a laboratory-scale simulated distribution system, comprised of the above materials was fabricated. Biofilm samples were collected from the designed system at different biofilm ages (10, 40 and 90 hours old) and enumerated. The results indicated that the biofilm formation occurred on all plumbing materials with Cu and R as exceptions. The intensity of biofilm formation was found to be maximum on PVC followed by PP and PE. We also demonstrated the chemical chromophore (Calcofluor) successfully for rapid and easy visual detection of biofilms, validated by scanning electron microscope (SEM) analysis of the plumbing materials. Chlorination has little effect in preventing biofilm development.


Sign in / Sign up

Export Citation Format

Share Document