Decreased sludge production strategy for domestic wastewater treatment

1994 ◽  
Vol 30 (8) ◽  
pp. 97-106 ◽  
Author(s):  
Angel Canales ◽  
Alain Pareilleux ◽  
Jean Luc Rols ◽  
Ge´rard Goma ◽  
Alain Huyard

With new EEC regulations, alternative treatment and disposal techniques of the excess sludge produced by Activated Sludge (AS) wastewater treatment plants have to be performed. In order to reduce the excess sludge produced, experiments have been carried out with a Membrane BioReactor (MBR) to study the maintenance and cryptic growth phenomena of Pseudomonas fluorescens culture taken as a model when grown on a limiting substrate complex medium similar to a synthetic urban wastewater. Experiments with various imposed wasting rates showed that viability and sludge production yield decreased when sludge age increased. Same variations were observed on the cell content ratio protein/polysaccharide by analysis of the cell lysis products released after discontinuous thermal treatment. Biomass growth on these cell lysis products was achieved to characterize cryptic growth and its impact on sludge production yield. Finally, a continuous sludge thermal treatment system was operating with MBR to amplify sludge breakage and consequently biomass growth on the lysis products. With the promising results obtained, this work gives a new outlook on the AS process and leads to the development of processes with control and reduction of sludge production.

2015 ◽  
Vol 768 ◽  
pp. 108-115
Author(s):  
Pan Yue Zhang ◽  
Tian Wan ◽  
Guang Ming Zhang

‘Sonication - cryptic growth’ technology can reduce 30-80% excess sludge in wastewater treatment systems. Various mechanisms contribute to the sludge reduction but the role of each one is unclear. This paper quantitatively studied the potential mechanisms in ‘sonication - cryptic growth’. The operation condition was: every day 20% sludge was sonicated under 1.2 Wml-1 for 15 min and then returned to the wastewater treatment reactor for cryptic growth. The results showed that under such conditions, ‘sonication - cryptic growth’ reduced the excess sludge by 57.3% and the effluent met the national discharge standard. Multiple mechanisms were involved in the process. Detailed analysis showed that the ‘lysis-cryptic growth’ mechanism was the most important one and accounted for 49.1% of sludge reduction. Biodegradation of residual sludge was the second important one and contributed 19.5%. Other potential mechanisms included the altered microbial community, longer sludge retention time, and accumulation of persistent materials. But organic load increase had virtually no impact.


2005 ◽  
Vol 95 (6) ◽  
pp. 447-455 ◽  
Author(s):  
Claudio Di Iaconi ◽  
Roberto Ramadori ◽  
Antonio Lopez ◽  
Roberto Passino

2005 ◽  
Vol 52 (10-11) ◽  
pp. 255-263 ◽  
Author(s):  
J. Chauzy ◽  
S. Graja ◽  
F. Gerardin ◽  
D. Crétenot ◽  
L. Patria ◽  
...  

In many cases, reducing sludge production could be the solution for wastewater treatment plants (WWTP) that here difficulty evacuating the residuals of wastewater treatment. The aim of this study was to test the possibility of minimising the excess sludge production by coupling a thermal hydrolysis stage and an anaerobic digestion with a very short HRT. The tests were carried out on a 2,500 p.e. pilot plant installed on a recycling loop between the clarifier and the actived sludge basin. The line equipped with the full scale pilot plant produced 38% TSS less than the control line during a 10 week period. Moreover, the rapid anaerobic digestion removed, on average, more than 50% of the total COD load with a hydraulic retention time (HRT) of 3 days. Lastly, the dryness of the remaining excess sludge, sanitised by the thermal hydrolysis, was more than 35% with an industrial centrifuge. This combination of thermal hydrolysis and rapid anaerobic digestion equally permits a significant gain of compactness compared to traditional anaerobic digesters.


2011 ◽  
Vol 63 (8) ◽  
pp. 1547-1556 ◽  
Author(s):  
J. S. Ventura ◽  
S. Seo ◽  
I. Chung ◽  
I. Yeom ◽  
H. Kim ◽  
...  

In this study, a pilot scale anaerobic-anoxic-oxic (A2O) process with submerged membrane (MBR) in the oxic tank was coupled with thermophilic aerobic digestion (TAD) reactor and was operated for longer than 600 days to treat real domestic wastewater. Regardless of the varying conditions of the system, the A2O-MBR-TAD process removed MLSS, TCOD, BOD, TN, TP, and E. coli about 99%, 96%, 96%, 70%, 83%, and 99%, respectively. The additional TP removal of the system was due to the precipitating agent directly added in the oxic reactor, without which TP removal was about 56%. In the TAD reactor, receiving MLSS from the oxic tank (MBR), about 25% of TSS and VSS were solubilized during 2 days of retention. The effluent of the TAD reactor was recycled into the anoxic tank of A2O-MBR to provide organic carbon for denitrification and cryptic growth. By controlling the flowrate of wasting stream from the MBR, sludge production decreased to almost zero. From these results, it was concluded that the A2O-MBR-TAD process could be a reliable option for excellent effluent quality and near zero-sludge production.


2003 ◽  
Vol 37 (18) ◽  
pp. 4453-4467 ◽  
Author(s):  
Yuansong Wei ◽  
Renze T. Van Houten ◽  
Arjan R. Borger ◽  
Dick H. Eikelboom ◽  
Yaobo Fan

2006 ◽  
Vol 54 (5) ◽  
pp. 51-58 ◽  
Author(s):  
T. Yamaguchi ◽  
Y. Yao ◽  
Y. Kihara

A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.


2002 ◽  
Vol 45 (12) ◽  
pp. 127-134 ◽  
Author(s):  
N. Shiota ◽  
A. Akashi ◽  
S. Hasegawa

A novel wastewater treatment process (S-TE PROCESS®) with significantly reduced production of excess sludge has been developed. The process consists of two different stages, one for a biological wastewater treatment and the other for a thermophilic aerobic digestion of the resulting sludge. A portion of return sludge from the wastewater treatment step is injected into a thermophilic aerobic sludge digester (TASD), in which the injected sludge is solubilized by the action of thermophilic aerobic bacteria. The solubilized sludge is returned to the aeration tank in the wastewater treatment step for its further degradation. Pilot-scale facilities of the S-TE process and the conventional activated sludge process as a control, both treating the same industrial wastewater, were comparatively operated for totally 270 days. As a result, 93% reduction in overall excess sludge production was achieved in the S-TE operation. The SS solubilization rate in TASD was stable at around 30%. Only a slight increase in the effluent SS and TOC concentrations was observed compared with those of the control facility. Otherwise the removal efficiency of TOC was approximately 95% for both plants. A full-scale plant treating domestic sewage was operated for three years, showing 75% reduction of overall excess sludge production. It was concluded that the new process was feasible.


Sign in / Sign up

Export Citation Format

Share Document