Post-Treatment of Pulp and Paper Industry Wastewaters Using Oxidation and Adsorption Processes

1994 ◽  
Vol 29 (5-6) ◽  
pp. 259-272 ◽  
Author(s):  
J. Kallas ◽  
R. Munter

The feasibility of using ozonation and adsorption for the post-treatment of biologically treated effluents of the pulp and paper industry has been studied. Equilibrium conditions, as well as the kinetics of both processes, have been determined. The COD, AOX (adsorbable organic halides) content and color were chosen as the main process parameters. General design of an ozone reactor and adsorption unit, as well as estimates of capital and operating costs for both processes, have also been presented. Some remarkable advantages of ozonation in comparison to PAC-adsorption have been emphasized: at the same purification cost ($/m3) ozonation can guarantee 7-8 times higher efficiency than adsorption. Destroying color bodies and toxic organochlorine compounds in the effluents from the pulp and paper industry with ozone has become very promising.

Chemosphere ◽  
2009 ◽  
Vol 75 (9) ◽  
pp. 1179-1185 ◽  
Author(s):  
N.S. Deshmukh ◽  
K.L. Lapsiya ◽  
D.V. Savant ◽  
S.A. Chiplonkar ◽  
T.Y. Yeole ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Amit Kumar

AbstractThe pulp and paper industry is known to be a large contributor to environmental pollution due to the huge consumption of chemicals and energy. Several chemicals including H2SO4, Cl2, ClO2, NaOH, and H2O2 are used during the bleaching process. These chemicals react with lignin and carbohydrates to generate a substantial amount of pollutants in bleach effluents. Environmental pressure has compelled the pulp and paper industry to reduce pollutant generation from the bleaching section. Enzymes have emerged as simple, economical, and eco-friendly alternatives for bleaching of pulp. The pretreatment of pulp with enzymes is termed as biobleaching or pre-bleaching. Different microbial enzymes such as xylanases, pectinases, laccases, manganese peroxidases (MnP), and lignin peroxidases are used for biobleaching. Xylanases depolymerize the hemicelluloses precipitated on pulp fiber surfaces and improves the efficiency of bleaching chemicals. Xylanase treatment also increases the pulp fibrillation and reduces the beating time of the pulp. Pectinases hydrolyze pectin available in the pulp fibers and improve the papermaking process. Laccase treatment is found more effective along with mediator molecules (as a laccase-mediator system). Biobleaching of pulp results in the superior quality of pulp along with lower consumption of chlorine-based chemicals and lower generation of adsorbable organic halidesadsorbable organic halides (AOX. An enzyme pretreatment reduces the kappa number of pulp and improves ISO brightness significantly. Better physical strength properties and pulp viscosity have also been observed during biobleaching of pulp.


2018 ◽  
Vol 8 (02) ◽  
pp. 61
Author(s):  
Andri Taufick Rizaluddin ◽  
Krisna Septiningrum

Proses pemasakan kayu dengan cara alkali aktif akan menghasilkan hexenuronic acid (HexA) yang berasal dari grup glucuronoxylan, tepatnya 4-O-methylglucuronoxylan pada hemiselulosa. Proses hidrolisis HexA menghasilkan dua jenis senyawa furan, yaitu 2-furancarboxylic acid (FA) dan 5-formyl-2-furancarboxylic acid (FFA). Proses hidrolisis HexA hasil proses pemasakan dan terkandung dalam pulp dan kertas merupakan salah satu penyebab proses penguningan pada kertas akibat adanya paparan kelembapan dan panas dari lingkungan. Selain itu, kandungan HexA pada pulp juga dapat meningkatkan konsumsi bahan kimia pada proses produksi pulp dan kertas, terutama pada proses pemutihan dan pengujian parameter bilangan Kappa, serta dapat  berkontribusi pada kandungan senyawa organik klorin terlarut dalam air limbah industri pulp dan kertas. Metode untuk menurunkan kandungan HexA dari pulp dan kertas antara lain dengan mengaplikasikan proses oksidatif kimia pada proses pemutihan atau dengan menggunakan proses enzimatis. Kandungan HexA yang rendah, akan dapat mempertahankan pulp dan kertas dari terjadinya proses penguningan, menghemat konsumsi bahan kimia serta menurunkan kandungan adsorbable organic halides (AOX) pada air limbah.Kata kunci: hexenuronic acid, pemasakan kayu, bilangan Kappa, AOX, enzimatis Hexenuronic Acid Content on Pulp and its Effects on Pulp Quality and Wastewater: a ReviewAbstractThe wood active alkali cooking process will produce hexenuronic acid (HexA) originating from 4-O-methylglucuronoxylan of the glucuronoxylan group in hemicellulose. Hydrolysis process of HexA produces two types of furan compounds, namely 2-furancarboxylic acid (FA) and 5-formyl-2-furancarboxylic acid (FFA). The HexA hydrolysis process contained in pulp and paper resulting from the cooking process is one of the causes of the yellowing process on paper due to exposure to moisture and heat from the environment. In addition, the HexA content of pulp can also increase the consumption of chemicals in the pulp and paper production process, especially in the bleaching process and testing of Kappa number parameters, and can also contribute to the content of organic chlorine soluble compounds in the waste water of the pulp and paper industry. There are several methods for reducing the HexA content of pulp and paper including by applying the oxidative chemical process to the bleaching process or by using an enzymatic process. Low HexA content, will be able to maintain pulp and paper from the occurrence of the pulp yellowing process, save on chemical consumption and reduce the adsorbable organic halides (AOX) content in wastewater.Keywords: hexenuronic acid, wood cooking, Kappa number, AOX, enzymatic


TAPPI Journal ◽  
2014 ◽  
Vol 13 (6) ◽  
pp. 19-24
Author(s):  
TROY RUNGE ◽  
CHUNHUI ZHANG

Agricultural residues and energy crops are promising resources that can be utilized in the pulp and paper industry. This study examines the potential of co-cooking nonwood materials with hardwoods as means to incorporate nonwood material into a paper furnish. Specifically, miscanthus, switchgrass, and corn stover were substituted for poplar hardwood chips in the amounts of 10 wt %, 20 wt %, and 30 wt %, and the blends were subjected to kraft pulping experiments. The pulps were then bleached with an OD(EP)D sequence and then refined and formed into handsheets to characterize their physical properties. Surprisingly, all three co-cooked pulps showed improved strength properties (up to 35%). Sugar measurement of the pulps by high-performance liquid chromatography suggested that the strength increase correlated with enriched xylan content.


1999 ◽  
Vol 53 (10) ◽  
pp. 1334-1338 ◽  
Author(s):  
Yoshiya Kuide ◽  
Kazuyoshi Yamamoto

Sign in / Sign up

Export Citation Format

Share Document