Effects of an anaerobic zone in a textile wastewater treatment plant

1995 ◽  
Vol 32 (9-10) ◽  
pp. 133-140 ◽  
Author(s):  
G. Bortone ◽  
J. S. Cech ◽  
R. Bianchi ◽  
A. Tilche

High concentration of textile industries represents a serious environmental problem in the Como area in Northern Italy. The Seveso treatment plant was formerly performing biological removal of nitrogen by means of a modified Ludzack-Ettinger configuration. Being the plant overloaded, nitrification was not achieved. Therefore the plant flow sheet has been modified. The former predenitrification tank has been changed in an anaerobic compartment, since the internal recycle was stopped. The efficiency of the anaerobic reactor for COD removal, the selective pressure on the microbial community and the enhanced biological phosphorus removal were evaluated. In the anaerobic tank 40% of the influent COD was removed with a reaction time of only 45 minutes. The activated sludge showed a very high presence of Poly-P bacteria; anaerobic P release was noticed during the anaerobic phase. Sludge settleability was always good (contrary to a similar activated sludge treatment plant, also treating textile wastewater but without an anaerobic selector, that suffers heavy filamentous bulking and Nocardia foaming). The final effluent PO4-P concentration was always lower than 1 mg L−1.

2005 ◽  
Vol 52 (4) ◽  
pp. 91-98 ◽  
Author(s):  
C. Lubello ◽  
R. Gori

Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge+clariflocculation+ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.


2016 ◽  
Vol 21 (1-2) ◽  
pp. 117-123 ◽  
Author(s):  
Alicja Machnicka ◽  
Klaudiusz Grübel

AbstractPhosphorus removal in wastewater treatment plant is carried out by chemical precipitation, advanced biological treatment or a combination of both. One of the biggest problems with high concentration of phosphorus in water environment is eutrophication. Activated sludge flocs have a heterogeneous structure, which consist of a variety of microorganisms. Filamentous bacteria are normally present in the activated sludge and have ability to assimilation of phosphorus. In this study phosphorus accumulation by isolated filamentous bacteria from activated sludge foam was present.


2000 ◽  
Vol 42 (10-11) ◽  
pp. 223-229 ◽  
Author(s):  
O. V. Shipin ◽  
P. G. Meiring ◽  
J. R. Hoffmann

Ponding which is usually considered a low tech process can be successfully integrated with downstream Biological Nutrient Removal (BNR) facility. The PETRO system incorporating ponds and downstream trickling filter (TF) or activated sludge process (ASP) is a technology which offers simplicity of O and M combined with biological removal of P and N. It is feasible to produce in a primary facultative pond with a deep fermentation pit quantities of readily biodegradable substrates sufficient to meet the requirements of phosphate accumulating organisms (PAO) in a downstream BNR facility. Malodorous conditions are dealt with by high rate recirculation. This novel low tech approach is a step towards a more straightforward BNR process. PETRO concept features phenomenon of algae-assisted chemical P-removal in activated sludge reactor. The process results in precipitation of inorganic phosphates apparently in a form of calcium/magnesium salts. Possible mechanism of this additional process which removes up to several milligrams per litre of inorganic P is discussed.


1985 ◽  
Vol 17 (11-12) ◽  
pp. 309-310 ◽  
Author(s):  
W. Maier ◽  
P. Kainrath ◽  
Kh Krauth ◽  
R. Wagner

Enhanced biological phosphorus removal from domestic sewage was investigated in a single-stage activated sludge treatment plant with pre-denitrification operated in a continuous process. In 10 different experimental periods the influence of varying composition of the influent, varying systems of the pilot scale unit (with and without anaerobic basin), varying retention times in the different basins and varying sludge loads were investigated. Results of the experiments can be summarized as follows: the nutrient situation and especially the P/BOD5 and N/BOD5 ratios, retention time in the final clarifier, and organic sludge load plus the desired degree of nitrification have essential influence on the process and P removal efficiency. The conclusions for the pilot scale process are discussed.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 75-87 ◽  
Author(s):  
Y. J. Shao ◽  
J. Crosse ◽  
E. Keller ◽  
D. Jenkins

The City of Los Angeles USA Hyperion Treatment Plant (HTP) implemented high rate air activated sludge operations in November 1989. Using this process, the secondary treatment organic loading (F/M) was increased from 0.5 to 1.0 kg BOD/kg MLVSS/day and the MCRT reduced from 3.1 days to 1.5 days, thereby enabling the secondary treated flow to be increased from 150 mgd to 200mgd (6.6 to 8.8 m3/s). Excellent secondary effluent quality (BOD5 = 15 mg/l, carbonaceous BOD5 = 6 mg/l, SS = 6 mg/l) is currently obtained using rectangular secondary clarifiers operated at surface overflow rates of 1,100 gal/day/ft2 (43 m3/m2/day) and low MLSS concentrations (950 mg/l). The enhanced biological phosphorus removal that was obtained when operating at a 3 day MCRT was eliminated in the change to high rate operation and struvite (MgNH4PO4(c)) build-up in the anaerobic digesters has been eliminated. Nocardia scum formation, with its odor generating potential and other associated operating problems, has also been eliminated by high rate operation.


2009 ◽  
Vol 59 (5) ◽  
pp. 857-865 ◽  
Author(s):  
Y. Cao ◽  
C. M. Ang ◽  
K. C. Chua ◽  
F. W. Woo ◽  
H. Chi ◽  
...  

This paper presents the investigation results of retrofitting an anoxic selector to an anaerobic selector through stepwise reduction of air supply in a full-scale activated sludge process with a focus on enhanced biological phosphorus removal (EBPR). The process experienced gradual shift from a Ludzack-Ettinger (LE) to an anaerobic-anoxic-oxic (A2O) process and subsequently, an anaerobic-oxic (A/O) process. The major findings are: (i) the average influent-based PO43−-P release in the anaerobic selector compartment was 16.3 mg P l−1 and that in the secondary clarifier was 1.7 mg P l−1. 75% of the SCOD and 93% of the acetic acid in the primary effluent were taken up in the anaerobic selector compartment, respectively; (ii) PO43−-P uptake contributed by both aerobic and denitrifying phosphorus accumulating organisms (DPAOs) occurred mainly in the first and second aerobic lanes together with simultaneous nitrification and denitrification (SND) while there was not much contribution from the last aerobic lane; (iii) The average PO43−-P concentration of the final effluent was 2.4 mg P l−1 corresponding to a removal efficiency of 85%; (iv) the SVI was satisfactory after retrofitting; and (v) the increase of NH4+-N in the final effluent from the commencement to the completion of the retrofitting resulted in an approximate 40–50% reduction in oxygen demand and a significant aeration energy saving was achieved.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Katarzyna Paździor ◽  
Lucyna Bilińska

AbstractThe relationship between a quality of activated sludge microbiota and wastewater treatment plant (WWTP) operational stability has been defined in the past few decades. However, this dependence is not so clear in the case of industrial wastewater treatment. In this article, a very specific example of industrial textile wastewater treatment plant (ITWTP) is analyzed. Textile effluents are well known as highly contaminated wastewater containing many biodegradable compounds. Microscopic analysis included flocs morphology examination, attempts to evaluate the Sludge Biotic Index (SBI), and identification of dominant filamentous microorganisms. Routine operational control of ITWTP covered pH, temperature, redox potential, dissolved oxygen and COD measurements. The average ecosystem existing in the described ITWTP differed significantly compared to municipal WWTPs. The flocs were smaller and irregular. Filamentous bacteria did not cause foaming although filaments index reached 4. Nostocoida limicola I dominated with significant amounts of type 0041 and type 021N. The evaluation of SBI was impossible as the most of protozoan was in the form of cysts. The overall microbiota diversity correlated with COD removal in activated sludge unit of ITWTP.


1996 ◽  
Vol 33 (12) ◽  
pp. 251-254
Author(s):  
Karl Arno Bäumer ◽  
Angela Baumann

The Institute for Water and Waste Management (ISA) at the Aachen University of Technology (RWTH) verified, through semi-technical analysis, the efficiency of the planned upgrade of the Kleve-Salmorth waste water treatment plant. Additionally the allowable biological phosphorus removal limit and the scheduled simultaneous precipitation were also ascertained.


Sign in / Sign up

Export Citation Format

Share Document