Treatment of dyehouse liquors in a biological sequencing batch reactor with recursive chemical oxidation

2001 ◽  
Vol 44 (5) ◽  
pp. 85-92 ◽  
Author(s):  
R. Krull ◽  
D.C. Hempel

A new developed sequencing batch process for the purification of residual water containing concentrated azo dye was investigated. Within a treatment cycle the biological anoxic decolorization, followed by an aerobic mineralization of organic metabolites in combination with the biodegradability-achieving partial oxidation with ozone are carried out sequentially. The split flow can be destructively purified to 90% with respect to the parameter DOC. It was decolorized to an extent of 98% and the toxicity measured by the bioluminescence test decreased up to 99%. With an unspecific facultative anaerobic bacterial mixed culture anoxic decolorization of the residual liquor (20 gdye/L) without addition of an external auxiliary substrate was observed. In the first phase of the treatment cycle, the azo dye-molecules are cleft at the azo bond by biochemical reduction which leads to the corresponding sulfonated aromatic amines. In the following aerobic phase the cleft products were mineralized by the same microorganisms in the same reactor. Because of the recalcitrant and respectively toxic character of a part of the remaining metabolites, further aerobic mineralization was initialized by partial oxidation with ozone. The recursive ozonization in a recircled stream with biological post-treatment of the transformed substances led to an increased reaction selectivity and lower consumption of ozone. The results have shown that the chosen sequencing batch reactor with the ozonization bypass is suitable for an effective treatment of high concentrated dyehouse liquors.

2018 ◽  
Vol 35 (12) ◽  
pp. 1322-1328
Author(s):  
Luis Enrique Lemus-Gómez ◽  
Maria Aurora Martínez-Trujillo ◽  
Isabel Membrillo-Venegas ◽  
Mayola García-Rivero

2004 ◽  
Vol 4 (5-6) ◽  
pp. 65-72
Author(s):  
G. Farabegoli ◽  
L. Pietrelli ◽  
E. Rolle ◽  
A. Sabene

The main aim of this research is to compare the efficiency of biological and chemical–physical treatments for the removal of organic azo dyes in the textile wastewater. Regarding the biological reduction of the wastewater colour the anaerobic/aerobic (ANA/AER) sequential step-treatment provides the best reductions in colour and COD. A lab-scale Sequencing Batch Reactor (SBR) fed with synthetic wastewater and mono-azo dye (at the initial concentration of 25 mg/l) was used achieving 84% colour reduction and 82% COD removal. Chemical–physical treatments were performed using the oxidative method with Fenton's reagent and adsorption on the activated carbon achieving respectively colour reduction over 90% (from the initial concentration of 250 mg/l) and 155 mg col/g GAC total adsorption capacity (from the initial concentration of 1 g/l).


1998 ◽  
Vol 38 (4-5) ◽  
pp. 339-346 ◽  
Author(s):  
R. Krull ◽  
M. Hemmi ◽  
P. Otto ◽  
D. C. Hempel

The combined biological and chemical treatment of highly concentrated reactive azo dye-containing residual dyehouse liquors with recalcitrant compounds was investigated in a sequencing batch reactor (SBR). The plant consists of a batch reactor in which the anoxic and aerobic phases are carried out by sequenced steps. Water-soluble reactive dyes were reductively cleft and decolorized by a facultative anaerobic bacterial mixed culture under anoxic conditions. Complete decolorization was observed up to concentrations of nearly 20 g dye/L without addition of an external auxiliar substrate. Mineralization of the cleavage products occurs with the same bacterial mixed culture in the same reactor under aerobic conditions. The biomass used for the anoxic treatment is grown in this aerobic phase by the use of split flows with readily biodegradable compounds. Because of the recalcitrant toxic character of some remaining substances, further aerobic mineralization was initiated by partial oxidation with ozone. Partial ozonization in a circulated stream with biological post-treatment of the transformed substances led to an increased reaction selectivity, to a better biological degradation and not least to a lower consumption of ozone. Due to this purification procedure involving highly concentrated residual dyehouse liquors a total decolorization and an overvall degradation of nearly 90% in DOC was achieved.


2015 ◽  
Vol 85 ◽  
pp. 327-336 ◽  
Author(s):  
Rita D.G. Franca ◽  
Anabela Vieira ◽  
Ana M.T. Mata ◽  
Gilda S. Carvalho ◽  
Helena M. Pinheiro ◽  
...  

2008 ◽  
Vol 86 (6) ◽  
pp. 455-460 ◽  
Author(s):  
Özer Çınar ◽  
Semra Yaşar ◽  
Metin Kertmen ◽  
Kevser Demiröz ◽  
Nevzat Özgü Yigit ◽  
...  

2008 ◽  
Vol 136 ◽  
pp. S460-S461
Author(s):  
Çınar Ozer ◽  
Yaşar Semra ◽  
Demiröz Kevser ◽  
Kertmen Metin

Sign in / Sign up

Export Citation Format

Share Document