Determination of photonic efficiency and quantum yield of formaldehyde formation in the presence of various TiO2 photocatalysts

2001 ◽  
Vol 44 (5) ◽  
pp. 279-286 ◽  
Author(s):  
C. Wang ◽  
D.W. Bahnemann ◽  
J.K. Dohrmann

Illumination of aqueous TiO2 suspentions yields hydroxyl radicals, which can be trapped by methanol producing formaldehyde (HCHO). In this work, the photonic efficiency and quantum yield of HCHO formation in colloidal TiO2 solutions and, P25 and UV 100 suspensions have been determined. Differences in photocatalytic activity of the three photocatalysts have been found and are discussed. The photonic efficiency of HCHO formation in the presence of P25 and UV 100 depends on the concentration of TiO2 and the pH. The critical concentration is 2.5 g/L. Below this, the photonic efficiency with P 25 is higher than with UV 100, and vice versa. Optimum pH values for P25 and UV 100 giving the maximum photonic efficiency are 7.7 and 10.4, respectively. Compared to P25 and UV 100, the true quantum yield of HCHO formation in colloidal TiO2 solution varies a little with pH and virtually does not change with the amount of loading of TiO2. The true quantum yield varies as the inverse square root of light intensity. The quantum yield increases from 0.02 to 0.08 when the absorbed photon flux decreases from 8.1 × 10-7 Ein/L s to 4.9 × 10-8 Ein/L s. A simple model is presented to explain the experimental observation.

1999 ◽  
Vol 71 (2) ◽  
pp. 321-335 ◽  
Author(s):  
Angela Salinaro ◽  
Alexei V. Emeline ◽  
Jincai Zhao ◽  
Hisao Hidaka ◽  
Vladimir K. Ryabchuk ◽  
...  

In the preceding article [Serpone and Salinaro, Pure Appl. Chem., 71(2), 303-320 (1999)] we examined two principal features of heterogeneous photocatalysis that demanded scrutiny: (i) description of photocatalysis and (ii) description of process efficiencies. For the latter we proposed a protocol relative photonic efficiency which could subsequently be converted to quantum yields. A difficulty in expressing a quantum yield in heterogeneous photochemistry is the very nature of the system, either solid/liquid or solid/gas, which places severe restrictions on measurement of the photon flow absorbed by the light harvesting component, herein the photocatalyst TiO2, owing to non-negligible scattering by the particulates. It was imperative therefore to examine the extent of this problem. Extinction and absorption spectra of TiO2 dispersions were determined at low titania loadings by normal absorption spectroscopy and by an integrated sphere method, respectively, to assess the extent of light scattering. The method is compared to the one reported by Grela et al. [J. Phys. Chem., 100, 16940 (1996)] who used a polynomial extrapolation of the light scattered in the visible region into the UV region where TiO2 absorbs significantly. This extrapolation underestimates the scattering component present in the extinction spectra, and will no doubt affect the accuracy of the quantum yield data. Further, we report additional details in assessing limiting photonic efficiencies and quantum yields in heterogeneous photocatalysis.


RSC Advances ◽  
2017 ◽  
Vol 7 (47) ◽  
pp. 29815-29820 ◽  
Author(s):  
Nassim El Achi ◽  
Youssef Bakkour ◽  
Laëtitia Chausset-Boissarie ◽  
Maël Penhoat ◽  
Christian Rolando

A new protocol for determining the photon flux inside a photomicroreactor is described using (E)-azobenzene and NMR spectroscopy which does not require the determination of the quantum yield of the unstableZisomer.


1987 ◽  
Vol 91 (13) ◽  
pp. 3463-3465 ◽  
Author(s):  
Gurvinder S. Jolly ◽  
Donald L. Singleton ◽  
George. Paraskevopoulos

2019 ◽  
Vol 20 (9) ◽  
pp. 938-941
Author(s):  
Victor Y. Glanz ◽  
Veronika A. Myasoedova ◽  
Andrey V. Grechko ◽  
Alexander N. Orekhov

Atherosclerosis is associated with the increased trans-sialidase activity, which can be detected in the blood plasma of atherosclerosis patients. The likely involvement in the disease pathogenesis made this activity an interesting research subject and the enzyme that may perform such activity was isolated and characterized in terms of substrate specificity and enzymatic properties. It was found that the enzyme has distinct optimum pH values, and its activity was enhanced by the presence of Ca2+ ions. Most importantly, the enzyme was able to cause atherogenic modification of lowdensity lipoprotein (LDL) particles in vitro. However, the identity of the discovered enzyme remained to be defined. Currently, sialyltransferases, mainly ST6Gal I, are regarded as major contributors to sialic acid metabolism in human blood. In this mini-review, we discuss the possibility that atherosclerosis- associated trans-sialidase does, in fact, belong to the sialyltransferases family.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdolrahim Foroutan ◽  
Majid Abbas Zadeh Haji Abadi ◽  
Yaser Kianinia ◽  
Mahdi Ghadiri

AbstractCollector type and pulp pH play an important role in the lead–zinc ore flotation process. In the current study, the effect of pulp pH and the collector type parameters on the galena and sphalerite flotation from a complex lead–zinc–iron ore was investigated. The ethyl xanthate and Aero 3418 collectors were used for lead flotation and Aero 3477 and amyl xanthate for zinc flotation. It was found that maximum lead grade could be achieved by using Aero 3418 as collector at pH 8. Also, iron and zinc recoveries and grades were increased in the lead concentrate at lower pH which caused zinc recovery reduction in the zinc concentrate and decrease the lead grade concentrate. Furthermore, the results showed that the maximum zinc grade and recovery of 42.9% and 76.7% were achieved at pH 6 in the presence of Aero 3477 as collector. For both collectors at pH 5, Zinc recovery was increased around 2–3%; however, the iron recovery was also increased at this pH which reduced the zinc concentrate quality. Finally, pH 8 and pH 6 were selected as optimum pH values for lead and zinc flotation circuits, respectively.


Sign in / Sign up

Export Citation Format

Share Document