scholarly journals Critical importance of pH and collector type on the flotation of sphalerite and galena from a low-grade lead–zinc ore

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdolrahim Foroutan ◽  
Majid Abbas Zadeh Haji Abadi ◽  
Yaser Kianinia ◽  
Mahdi Ghadiri

AbstractCollector type and pulp pH play an important role in the lead–zinc ore flotation process. In the current study, the effect of pulp pH and the collector type parameters on the galena and sphalerite flotation from a complex lead–zinc–iron ore was investigated. The ethyl xanthate and Aero 3418 collectors were used for lead flotation and Aero 3477 and amyl xanthate for zinc flotation. It was found that maximum lead grade could be achieved by using Aero 3418 as collector at pH 8. Also, iron and zinc recoveries and grades were increased in the lead concentrate at lower pH which caused zinc recovery reduction in the zinc concentrate and decrease the lead grade concentrate. Furthermore, the results showed that the maximum zinc grade and recovery of 42.9% and 76.7% were achieved at pH 6 in the presence of Aero 3477 as collector. For both collectors at pH 5, Zinc recovery was increased around 2–3%; however, the iron recovery was also increased at this pH which reduced the zinc concentrate quality. Finally, pH 8 and pH 6 were selected as optimum pH values for lead and zinc flotation circuits, respectively.

2014 ◽  
Vol 675-677 ◽  
pp. 1451-1454 ◽  
Author(s):  
Gui Ying Zhou ◽  
Wen Juan Li ◽  
Yong Chen ◽  
Yong Sheng Song

The tailing in a large lead-zinc-iron-sulfur multi-metallic mine has rich reservation in variety of metallic minerals. It has been difficult to recover because of all kinds of reasons. The challenges faced by lead-zinc ore beneficiation are, low grade and recovery of lead and zinc concentrate for fine disseminated grain size, high oxidation rate and close intergrowth. This paper presents a Pulp Potential Control Flotation by stages technique to improve the flotation performance of the lead-zinc ores. In the electrochemical potential controlling flotation processing, using DDTC as collector, the separation potential range of galena and sphalerite with pyrrhotite can be achieved. Flotation circuit of lead-zinc-silver tailing ore was achieved.


2020 ◽  
pp. 33-39
Author(s):  
S. S. Plyasovitsa ◽  
◽  
O. A. Kravtsova ◽  
N. V. Ivanova ◽  
I. Yu. Semenov ◽  
...  

The authors carried out a mineralogical study and substantiated a concentration process developed for the lead-zinc ores of the Pavlovsk deposit. The concentration of the valuable component in each type of concentrate is determined by the amount of pyrite contained in the ore. It was established that the main loss of lead with flotation tailings is associated with oxidized phases, which are mainly found in fine material. Lead sulphides account for 30% of the entire waste tailings. Using the results of the mineralogical study, a flotation process was developed that involves a staged separation of commercial lead and zinc concentrates, as well as waste tailings. The obtained zinc concentrate has a consistently high quality of 57–58% with an 85–90% recovery. The metal concentration in the lead concentrate 1 is 45%, with the recovery being 43%. On the basis of the experimental results, the authors propose to use an X-ray radiometric separation method for coarse ore, which will help reduce the amount of incoming ore by 30% while minimizing the loss of lead and zinc.


2012 ◽  
Vol 549 ◽  
pp. 513-518
Author(s):  
Xiao Lin Zhang ◽  
Jian Jun Fang ◽  
Dian Wen Liu ◽  
Shu Qin Zeng

Ore samples, collected from a lead-zinc oxide ore deposit in Sichuan province, China, are very difficult to treat with such characteristics as low grade, uneven mineral particle distribution and high containing of slime. It is very difficult to separate the lead minerals and zinc minerals, especially for the recovery of zinc oxide minerals. On the basis of flotation characteristics study to gangue and useful minerals, author studied flotation behavior of lead-zinc oxide ore with new collectors (KM21 and YO-1), and carried out the experiment on separating useful minerals from gangue minerals. Test results showed, a lead concentrate with a grade of 59.78 percent and a recovery of 86.49 percent and a zinc concentrate with a grade of 48.53 percent and a recovery of 84.92 percent were obtained from the crude ore with the oxidation rate of 74.34 percent and 89.30 percent of lead and zinc respectively, which realized the high efficient flotation separation of the refractory lead-zinc oxide ores.


2012 ◽  
Vol 532-533 ◽  
pp. 115-120
Author(s):  
Shu Qin Zeng ◽  
Xiao Lin Zhang ◽  
Dian Wen Liu ◽  
Zhi Chong Wei

Rude ores, which were collected from two lead-zinc oxide ore deposits in Sichuan province, are very difficult to process with low grade and uneven mineral dissemination. It is very difficult to separate valuable minerals from gangue minerals, especially for the recovery of lead and zinc minerals. On the basis of mineral characteristic study, author studied flotation technology on lead-zinc mineral, and gained satisfactory concentrate indicator by stage-grinding: the lead concentrate with a grade of 52.45 percents and a recovery of 79.30 percents and the zinc concentrate with a grade of 35.26 percents and a recovery of 87.57 percents .


Author(s):  
Muhammad Arif Bhatti ◽  
Kamran Raza Kazmi ◽  
Abdul Ahad ◽  
Anila Tabassum ◽  
Rashid Mehmood ◽  
...  

A bench-scale beneficiation study was performed on low-grade complex lead-zinc ore of Duddar area, District Lasbela, Balochistan Province, Pakistan. The polymetallic ore under investigation contains galena and sphalerite as valuable minerals of lead and zinc. The low-grade ore was upgraded by selective sequential froth flotation technology to recover both minerals. An effort was made to investigate the effect of important variables on grade and recovery of concentrates and to design the process flow sheet. Different parameters of flotation process such as particle size of the feed, pH and % solids of the pulp, speed of impeller, type of reagents (collectors, frothers, regulators and modifiers) and their quantities, conditioning time and flotation time were optimized to attain maximum grade and recovery of respective concentrates. The rougher concentrates obtained were subjected to one regrinding and two cleaning operations to achieve higher-grade concentrates of both metals. Bench-scale flotation tests show that it is possible to obtain a lead concentrate assaying 65.24% Pb with recovery rate of 81.32% and a zinc concentrate containing 55.63% Zn content with recovery rate of 80.28%. Both the concentrates meet the specifications required for metallurgical and chemical grades.


2010 ◽  
Vol 92 ◽  
pp. 13-21
Author(s):  
Han Ping Zhang ◽  
Xiao Li Wang ◽  
Xu Ming Wang ◽  
Sheng Jian ◽  
Qun Zhao

The run-of-mine of complex lead-zinc ores in Yunnan contains 3.26% lead and 2.54% zinc. When traditional selective flotation flowsheet was adopted, 3.77% yield and 61.92% grade of lead concentrate as well as 5.65% yield and 38.67% grade of zinc concentrate were achieved. Simultaneously, 72.39% lead recovery and 3.83% zinc grade in lead concentrate as well as 80.64% zinc recovery and 6.39% lead grade in zinc concentrate were obtained. Lead concentrate and zinc concentrate obtained from selective flotation contain each other severely, resulting in low recovery of lead and zinc and severe loss of metal, which influences subsequent smelting flowsheet. In addition, due to requirement of large amount of depressant and activator while separating lead and zinc in the process of mineral processing, the cost is very high and the compositions of tail water which can not be recycled by the plant are very complicated. For the combined flowsheet of beneficiation and metallurgy, bulk flotation flowsheet was adopted. Therefore, 11.22% yield of combined lead and zinc concentrate with 25.55% lead grade, 18.33% zinc grade and 86.36% lead recovery were obtained. Gravity separation technology was utilized to separate combined concentrate of lead and zinc. After selecting out part of high quality lead concentrate, the remaining combined concentrate of lead and zinc was treated by acid leaching under high pressure. The final leaching efficiency of zinc was able to reach 97%. The new combined flowsheet has lots of advantages such as shorter flowsheet of beneficiation, simpler reagents, more direct reuse of backwater and higher recovery of metals.


2012 ◽  
Vol 454 ◽  
pp. 183-188
Author(s):  
Ming Ming Li ◽  
Qi Dong Zhang

On the basis of analyzing sample properties of lead-zinc ore, the optimum experimental condition combination was obtained from systematic experimental studies of the conditions. The experimental condition combination was validated by the full process closed-circuit experiment, which showed that the good separation indexes on lead grade of 59.78% in lead concentrates, the lead recovery of 87.50%, and zinc concentrate grade of 56.33%, the zinc recovery of 93.60%, and sulfur concentrate contained 0.50% of lead, 0.47% of zinc.


2015 ◽  
Vol 1089 ◽  
pp. 80-88
Author(s):  
Jun Hui Zhang ◽  
Yuan Zhang ◽  
Yong Tao Yang

The study on potential-controlled flotation test of differential flotation process was carried out in the light of the change of a certain ore properties. The test used self-developed EMZ-91, as well as conventional collectors of ethyl thio carbamate and butyl xanthate for the flotation of copper, lead and zinc ores respectively, in which the copper sulfate was used as the activator of zinc mineral. The new differential flotation process, which is using lime to regulate pulp potential, produced the copper concentrate grading 27.18% copper at 73.37% recovery, the lead concentrate grading 66.00% lead at 63.00% recovery, and the zinc concentrate grading 55.27% zinc at 87.69% recovery.


2014 ◽  
Vol 997 ◽  
pp. 583-586
Author(s):  
Yong Chen ◽  
Yong Sheng Song ◽  
Gui Ying Zhou ◽  
Wen Juan Li

Detailed characterisation and recovery of galena, sphalerite, and pyrrhotite from the beneficiation plant tailing of YouXi, China, was investigated. Different characterisation techniques viz. size analysis, chemical analysis, mineral analysis by Mineral Liberation Analyser(MLA)were carried out. Based on the appreciable differences in specific gravity, floatability and magnetic susceptibility between the desired lead, zinc, sulphur minerals and the gangue minerals, the flow sheets comprising desliming, flotation and magnetic separation, was used to recover galena, sphalerite, and pyrrhotite values. A lead and zinc concentrate of Pb 16.02%, Zn 35.1% and sulphur concentrate assays 35% S and 56% Fe can be produced from the tailing.


2013 ◽  
Vol 734-737 ◽  
pp. 950-957
Author(s):  
Yong Tao Yang ◽  
Jun Hui Zhang ◽  
Yuan Zhang

The processing experiment research was conducted on a certain fine-size and low-grade inseparable lead-zinc ore, in view of the characteristics of fine grain size composition and complex dissemination, under the conditions of grinding fineness of-325 mesh and content of 80%, as a result, the lead concentrate which has grade of 55.38% lead and recovery of 46.11% and zinc concentrate which has grade of 48.67% zinc and recovery of 66.42% were produced by adopting mineral processing flowsheet of "lead-sulfur of differential flotation partial cyclic flotation of zinc middling regrinding separations of lead and sulfur".


Sign in / Sign up

Export Citation Format

Share Document