Pilot-scale comparison of thermophilic aerobic suspended carrier biofilm process and activated sludge process in pulp and paper mill effluent treatment

2004 ◽  
Vol 50 (3) ◽  
pp. 95-102 ◽  
Author(s):  
J.E. Suvilampi ◽  
J.A. Rintala

Thermophilic aerobic treatment of settled pulp and paper mill effluent was studied under mill premises with two comparative pilot processes; suspended carrier biofilm process (SCBP) and activated sludge process (ASP). Full-scale mesophilic activated sludge process was a reference treatment. During the runs (61 days) hydraulic retention times (HRTs) were kept 13 ± 5 h and 16 ± 6 h for SCBP and ASP, respectively. Corresponding volumetric loadings rates (VLR) were 2.7 ± 0.9 and 2.2 ± 1.0 kg CODfilt m-3d-1. Temperatures varied between 46 to 60°C in both processes. Mesophilic ASP was operated with HRT of 36 h, corresponding VLR of 0.7 kg CODfilt m-3d-1. Both SCBP and ASP achieved CODfilt (GF/A filtered) removals up to 85%, while the mesophilic ASP removal was 89 ± 2%. NTU values were markedly higher (100-300) in thermophilic effluents than in mesophilic effluent (30). Effluent turbidity was highly dependent on temperature; in batch experiment mesophilic effluent sample had NTU values of 30 and 60 at 35°C and 55°C, respectively. As a conclusion, both thermophilic treatments gave high CODfilt removals, which were close to mesophilic process removal and were achieved with less than half of HRT.

2000 ◽  
Vol 66 (12) ◽  
pp. 5155-5160 ◽  
Author(s):  
Francis Gauthier ◽  
Josh D. Neufeld ◽  
Brian T. Driscoll ◽  
Frederick S. Archibald

ABSTRACT The majority of pulp and paper mills now biotreat their combined effluents using activated sludge. On the assumption that their wood-based effluents have negligible fixed N, and that activated-sludge microorganisms will not fix significant N, these mills routinely spend large amounts adding ammonia or urea to their aeration tanks (bioreactors) to permit normal biomass growth. N2 fixation in seven Eastern Canadian pulp and paper mill effluent treatment systems was analyzed using acetylene reduction assays, quantitative nitrogenase (nifH) gene probing, and bacterial isolations. In situ N2 fixation was undetectable in all seven bioreactors but was present in six associated primary clarifiers. One primary clarifier was studied in greater detail. Approximately 50% of all culturable cells in the clarifier contained nifH, of which >90% were Klebsiella strains. All primary-clarifier coliform bacteria growing on MacConkey agar were identified as klebsiellas, and all those probed contained nifH. In contrast, analysis of 48 random coliform isolates from other mill water system locations showed that only 24 (50%) possessed thenifH gene, and only 13 (27%) showed inducible N2-fixing activity. Thus, all the pulp and paper mill primary clarifiers tested appeared to be sites of active N2fixation (0.87 to 4.90 mg of N liter−1 day−1) and a microbial community strongly biased toward this activity. This may also explain why coliform bacteria, especially klebsiellas, are indigenous in pulp and paper mill water systems.


2015 ◽  
Vol 57 (23) ◽  
pp. 10528-10536 ◽  
Author(s):  
Tripti Mishra ◽  
Sudipta Ramola ◽  
Anil Kumar Shankhwar ◽  
Amit Kumar Rabha ◽  
R.K. Srivastava

2011 ◽  
Vol 63 (3) ◽  
pp. 491-501 ◽  
Author(s):  
R. Dewi ◽  
J. A. Van Leeuwen ◽  
A. Everson ◽  
S. C. Nothrop ◽  
C. W. K. Chow

The use of coagulation and flocculation for tertiary treatment of pulp and paper mill effluent was investigated, where the evaluation was based on the removal of nitrogen (N), phosphorus (P) and BOD from post-coagulated wastewater. The study was undertaken on laboratory scale aerobic stabilisation basins (ASB). Two post coagulated (alum) wastewaters were studied, where the BOD:N:P ratios were 100:1.3:0.06 and 100:1.3:0.3. These wastewaters were treated in two identical concurrent simulations (A & B). The influent ratio for ‘A’ was selected representing the composition of actual coagulated Pinus radiata sulfite pulp effluent mixed with paper mill effluent. The input composition for ‘B’ represented a typical P concentration found in existing pulp and paper mill effluents. Unmodified sludge collected from a mill-pond was added at 4% v/v to each simulation replicating the treatment conditions at full-scale. Similar high percentage removals of BOD and COD occurred after 28 days (two HRTs) which were 94 and 67% respectively for ‘A’, and 98 and 70% respectively for ‘B’, where both remained at steady state during the third HRT. A statistical analysis of the data revealed that there was no significant difference in the sample variance of the BOD and COD results.


1994 ◽  
Vol 29 (9) ◽  
pp. 79-88 ◽  
Author(s):  
W. Wesley Eckenfelder ◽  
John L. Musterman

Industrial wastewaters may have a significant impact on municipal activated sludge plants. Depending on the degradability of the wastewater, the overall reaction coefficient, K, may be increased or decreased. Readily degradable wastewaters will render the process more susceptible to filamentous bulking. Increasing the soluble BOD fraction will increase the temperature effect. Sludge dewaterability may be decreased with readily degradable soluble wastewaters or increased with pulp and paper mill wastewaters containing pulp and fibre. Volatile organics which do not biodegrade require source treatment. Effluent toxicity should be controlled by industrial pretreatment where possible. In some cases, PAC will eliminate toxicity in the activated sludge process.


2004 ◽  
Vol 50 (3) ◽  
pp. 87-94 ◽  
Author(s):  
C.B. Milestone ◽  
R.R. Fulthorpe ◽  
T.R. Stuthridge

Colour discharges are gaining renewed focus in the pulp and paper industry as increasingly strict regulatory limits are placed on wastewater quality and aesthetics. In-mill process improvements, such as ECF bleaching and oxygen delignification, have decreased wastewater colour loadings. However, a survey of 12 pulp and paper mill systems found that effluent treatment using aerated stabilisation basins (ASB) leads to average increases in colour of 20-40%. In some instances, this phenomenon may even double the influent colour levels. Activated sludge systems did not produce a colour increase. The measured increases that follow ASB secondary treatment may be sufficient for a mill to fail prescribed discharge standards. A detailed field survey focusing on sections of an integrated bleached kraft mill ASB treatment system was undertaken. The average increase in colour at the final point of discharge was 45%. The major changes in colour concentration occurred in the inlet to the main treatment pond, and in polishing ponds that followed the main treatment pond. Both of these areas receive little or no aeration. No significant change was observed in the highly aerated main pond. These results, along with literature reports, suggested that redox conditions play a major role in influencing colour behaviour. To test this, two series of paired continuously stirred reactors were used to treat whole mill effluent from two ECF bleached kraft mills in parallel. The first series initially treated under anaerobic conditions, followed by an aerobic reactor, while the second series reversed this order. With the initial anaerobic stage, effluent colour increased by 18% and 19% for the first and second series respectively. Subsequent treatment by aerobic bacteria further increased colour by 14% and 6%, for a total increase of 32% and 25%. Initial aerobic treatment, however, did not lead to any significant change in colour for either effluent. Further anaerobic treatment following aerobic conditions produced only small increases in colour. These results are consistent with the ASB and activated sludge system survey, suggesting that anaerobic conditions at the head of treatment systems initiate the observed increases in effluent colour in ASB treatment systems.


Sign in / Sign up

Export Citation Format

Share Document