Buoyant Filter Bio-Reactor (BFBR)–a novel anaerobic wastewater treatment unit

2008 ◽  
Vol 58 (2) ◽  
pp. 373-377
Author(s):  
Soosan J. Panicker ◽  
M. C. Philipose ◽  
Ajit Haridas

The Buoyant Filter Bio-Reactor (BFBR) is a novel and very efficient method for the treatment of complex wastewater. Sewage is a complex wastewater containing insoluble COD contributed by fat and proteins. The fat and proteins present in the domestic sewage cause operational problems and underperformance in the Upflow Anaerobic Sludge Blanket Reactor, used now for treating sewage anaerobically. The biogas yield from the BFBR is 0.36 m3/kg COD reduced and the methane content was about 70–80%. Production of methane by anaerobic digestion of organic waste had the benefit of lower energy costs for treatment and is thus environmentally beneficial to the society by providing a clean fuel from renewable feed stocks. The BFBR achieved a COD removal efficiency of 80–90% for an organic loading rate of 4.5 kg/m3/d at a hydraulic retention time of 3.25 hours. The effluent COD was less than 100 mg/l, thus saving on secondary treatment cost. No pretreatment like sedimentation was required for the influent to the BFBR. The BFBR can produce low turbidity effluent as in the activated sludge process (ASP). The land area required for the BFBR treatment plant is less when compared to ASP plant. Hence the problem of scarcity of land for the treatment plant is reduced. The total expenditure for erecting the unit was less than 50% as that of conventional ASP for the same COD removal efficiency including land cost.

2006 ◽  
Vol 54 (2) ◽  
pp. 49-55 ◽  
Author(s):  
R.C. Leitão ◽  
S.T. Santaellla ◽  
A.C. van Haandel ◽  
G. Zeeman ◽  
G. Lettinga

In this investigation, the robustness and stability of UASB reactors was evaluated on the basis of four indicators: (i) COD removal efficiency; (ii) effluent variability; (iii) pH stability; and (iv) recovery time. The experiments were carried out using six pilot-scale UASB reactors fed with domestic sewage and operated under different operational conditions. After establishment of a “steady-state”, organic and hydraulic shock loads (six times the loading rate during six hours) were imposed. The results show that the UASB reactors are robust systems with regards to COD removal efficiency and pH stability when exposed to shock loads. However, this reactor cannot attenuate the imposed fluctuation in the influent COD. A secondary treatment unit is needed to retain the expelled sludge occurring as a result of a hydraulic shock load, or prior to the shock, a sufficient amount of sludge needs to be discharged from the reactor.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Tao Wang ◽  
Zhenxing Huang ◽  
Hongyan Ren ◽  
Hengfeng Miao ◽  
Minxing Zhao ◽  
...  

This study aimed to investigate the effectiveness of the full-scale internal circulation (IC) reactor in biodegrading of municipal solid waste (MSW) fresh leachate under mesophilic conditions, where the anaerobic process stability, biogas yield, and sludge granulation were intensively investigated. The effects of operational parameters on the influent organic loading rate (OLR), chemical oxygen demand (COD) removal efficiency, alkalinity (ALK), pH, volatile fatty acids (VFAs) accumulation, and effluent recirculation were also studied. The results showed that the reactor operated stably and effectively. The COD removal efficiency and biogas yield could be maintained at (92.8 ± 2.0)% and (0.47 ± 0.05) m3/kg CODremoval, respectively, with the influent OLR (24.5 ± 0.9) kg COD/(m3 d) and hydraulic retention time (HRT) 2.7d during the stable operation phase. Meanwhile, this study demonstrated that 1.5–3.0 m/h would be the optimal Vup for the reactor, corresponding to the effluent recirculation of 32.5–78.0 m3/h. Moreover, it was found that the content of extracellular polymeric substances (EPS) in the anaerobic sludge increased from 50.3 to 140.7 mg/g volatile suspended solids (VSS), and the sludge had good granular performance during the reactor operation.


2013 ◽  
Vol 726-731 ◽  
pp. 2813-2817
Author(s):  
Guang Li ◽  
Jing Li ◽  
Ke Sun

The interior diversion expanded granular sludge bed was concurrently operated for 140d to study the characteristic of the granular sludge bed. The influent COD concentration varied from 2000mg/L to 22300 mg/L, hydraulic retention time was maintained constant at 24 h and the organic loading rate was changed through a change in substrate concentration. The results showed that the reactor had great COD removal efficiency. When the MLSS was 23.1g/L, the influent COD was 18890mg/L, the COD removal efficiency was 80.4%; The interior diversion EGSB could greatly improve the role of gas-dynamic, when the liquid upflow velocity was 3.55m/h, the gas production was 5.96 L/d shows higher sludge bed expansion rate than 2.77 L/d about 9.5%. During the experimental, the anaerobic sludge has the following properties: the average sludge diameter was increased from 0.41mm to 1.66mm. Observed under the scanning electronic microscopy, we found that the sludge appeared obviously granulation, the bacteria amount and species are more than seed sludge after operation of 50d. It was found that rough surface of anaerobic sludge has clear figure with being covered by mucous lamina, with visible hole or cavity on surface.


2019 ◽  
Vol 80 (8) ◽  
pp. 1505-1511 ◽  
Author(s):  
Nathalie Dyane Miranda Slompo ◽  
Larissa Quartaroli ◽  
Grietje Zeeman ◽  
Gustavo Henrique Ribeiro da Silva ◽  
Luiz Antonio Daniel

Abstract Decentralized sanitary wastewater treatment has become a viable and sustainable alternative, especially for developing countries and small communities. Besides, effluents may present variations in chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total nitrogen values. This study describes the feasibility of using a pilot upflow anaerobic sludge blanket (UASB) reactor to treat wastewater with different organic loads (COD), using black water (BW) and sanitary wastewater, in addition to its potential for preserving nutrients for later recovery and/or reuse. The UASB reactor was operated continuously for 95 weeks, with a hydraulic retention time of 3 days. In Phase 1, the reactor treated simulated BW and achieved 77% CODtotal removal. In Phase 2, treating only sanitary wastewater, the CODtotal removal efficiency was 60%. Phase 3 treated simulated BW again, and CODtotal removal efficiency was somewhat higher than in Phase 1, reaching 81%. In Phase 3, the removal of pathogens was also evaluated: the efficiency was 1.96 log for Escherichia coli and 2.13 log for total coliforms. The UASB reactor was able to withstand large variations in the organic loading rate (0.09–1.49 kg COD m−3 d−1), in continuous operation mode, maintaining a stable organic matter removal.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 299-305 ◽  
Author(s):  
R.C. Leitão ◽  
J.A. Silva-Filho ◽  
W. Sanders ◽  
A.C. van Haandel ◽  
G. Zeeman ◽  
...  

In this investigation, the performance of Upflow Anaerobic Sludge Blanket (UASB) reactors treating municipal wastewater was evaluated on the basis of: (i) COD removal efficiency, (ii) effluent variability, and (iii) pH stability. The experiments were performed using 8 pilot-scale UASB reactors (120 L) from which some of them were operated with different influent COD (CODInf ranging from 92 to 816 mg/L) and some at different hydraulic retention time (HRT ranging from 1 to 6 h). The results show that decreasing the CODInf, or lowering the HRT, leads to decreased efficiencies and increased effluent variability. During this experiment, the reactors could treat efficiently sewage with concentration as low as 200 mg COD/L. They could also be operated satisfactorily at an HRT as low as 2 hours, without problems of operational stability. The maximum COD removal efficiency can be achieved at CODInf exceeding 300 mg/L and HRT of 6 h.


1991 ◽  
Vol 24 (3-4) ◽  
pp. 149-160 ◽  
Author(s):  
J. Rintala ◽  
J. L. Sanz Martin ◽  
G. Lettinga

Anaerobic treatment of sulfate - rich (COD/SO4 ratio 1.4-2.1) clarified Whitewater from a thermomechanical pulping (TMP) process was studied in three laboratory-scale upflow anaerobic sludge blanket (UASB) reactors at 55°C and in batch digesters at 55° and 65°C. Different seed materials were used in the UASB reactors. The highest COD removal efficiency (effluent sulfide stripped) achieved was approximately 65 % in the UASB reactors. About 55 % COD removal efficiency was obtained at a loading rate of about 41 kgCODm−3d−1 in the UASB reactor seeded with thermophilic sludge cultivated with volatile fatty acids (VFAs). The total sulfide present in the liquid phase after anaerobic treatment accounted for approximately 65-78 % and 15-61 % of the removed COD in the batch digesters and the UASB reactors, respectively. Sulfate reduction was almost complete in the batch digesters, whereas about 24-64 % of sulfate was reduced in the UASB reactors. Acetate utilization for sulfate reduction was apparent in the batch digesters, whereas that could not be demonstrated in the UASB reactors. Sulfate reduction in the UASB reactors was obviously substrate limited. In conclusion, thermophilic anaerobic treatment is an alternative for the treatment of warm sulfate rich TMP process water.


2014 ◽  
Vol 953-954 ◽  
pp. 1105-1108 ◽  
Author(s):  
Seni Karnchanawong ◽  
Kraiwet Kabtum

The objective of this study was to investigate the toxicity of Na+and K+ions on performance of upflow anaerobic sludge blanket (UASB) system. Three laboratory-scale UASB reactors, 15.8 - l working volume, were employed with 1 reactor operated as control. They were loaded at organic loading rate (OLR) of 5 kg COD/(m3-d), treating synthetic wastewater with COD concentration ~ 5000 mg/l. Na+and K+ions were added in the range of 1010 - 7180 and 41 - 7320 mg/l, respectively. No toxicity was observed at influent Na+and K+concentrations up to 3340 and 2750 mg/l, respectively. Slight inhibitions on COD removal were founded at Na+and K+concentrations of 4610 and 3920 mg/l, respectively, but moderate effect on biogas production had occurred. When Na+and K+concentrations were increased to 7180 and 7320 mg/l, respectively, strong inhibitions were observed with COD removal dropped to 45.5 and 48.8 %, respectively. Ratios of biogas productions, as compared to the control reactor, were dropped to 0.31 and 0.32, respectively. Increasing cation concentrations had more detrimental effect on biogas production than COD removal.


2020 ◽  
Vol 9 (1) ◽  
pp. 32-51
Author(s):  
Revanuru Subramanyam

This research article describes start-up performance of an UASB (Upflow Anaerobic Sludge Blanket) reactor in terms of chemical oxygen demand (COD) removal efficiency, biogas production, sludge loading rate (SLR), volatile fatty acids (VFA), pH, alkalinity, total solids (TS) and volatile suspended solids (VSS), fed with synthetic wastewater with increased concentrations of glucose. The reactor was loaded up to an OLR (Organic Loading Rate) of 15 kg COD m-3 d-1 and achieved a COD removal efficiency of 82 ±3%. The results showed that digested seed sludge was successfully acclimatized and transformed finally into granular sludge within a period of 120 days. An increase in the accumulation of VFA at high OLRs showed that methanogenesis could be the rate-limiting step in the reactor operation. The SLR and VSS/TS ratio were increased with an increase in OLR. During the initial stages, uniform distribution of VSS concentration and later on maximum VSS concentration were found at port number two at a height of 350 mm. The carbon balance depicts that the maximum percentage of influent COD converted to methane COD. An increase in specific methanogenic activity values with the age of sludge confirmed the transformation of the seed sludge in to a granular sludge.


2017 ◽  
Vol 75 (6) ◽  
pp. 1351-1361 ◽  
Author(s):  
Alain R. Picos-Benítez ◽  
Juan D. López-Hincapié ◽  
Abraham U. Chávez-Ramírez ◽  
Adrián Rodríguez-García

The complex non-linear behavior presented in the biological treatment of wastewater requires an accurate model to predict the system performance. This study evaluates the effectiveness of an artificial intelligence (AI) model, based on the combination of artificial neural networks (ANNs) and genetic algorithms (GAs), to find the optimum performance of an up-flow anaerobic sludge blanket reactor (UASB) for saline wastewater treatment. Chemical oxygen demand (COD) removal was predicted using conductivity, organic loading rate (OLR) and temperature as input variables. The ANN model was built from experimental data and performance was assessed through the maximum mean absolute percentage error (= 9.226%) computed from the measured and model predicted values of the COD. Accordingly, the ANN model was used as a fitness function in a GA to find the best operational condition. In the worst case scenario (low energy requirements, high OLR usage and high salinity) this model guaranteed COD removal efficiency values above 70%. This result is consistent and was validated experimentally, confirming that this ANN-GA model can be used as a tool to achieve the best performance of a UASB reactor with the minimum requirement of energy for saline wastewater treatment.


1995 ◽  
Vol 22 (3) ◽  
pp. 551-565 ◽  
Author(s):  
Prayoon Fongsatitkul ◽  
Donald S. Mavinic ◽  
K. V. Lo

This research evaluated the effectiveness and feasibility of two-phase (separation acid and methanogenic phases) anaerobic digestion of simulated sewage sludge using a UASB-UASB (upflow anaerobic sludge blanket) process. Predictive models of chemical oxygen demand (COD) (soluble) removal efficiency and CH4 gas production during loading maximization and the recovery (after failure) period were made. The optimum hydraulic retention time (HRT) for the A-UASB was about 1.0 d; for the M-UASB system, two different optimum HRTs were evident, depending on the operational mode. When the UASB-UASB system was run under the maximum loading possible, the best HRT in the M-UASB was about 2.0 d, to achieve high COD removal and concurrent optimum CH4 production; after deliberate overloading, to induce failure, and subsequent system recovery, the predicted optimum HRT in the methane unit was about 2.7 d, to achieve concurrent adequate CH4 production and COD removal. There also appeared to be a restructuring of the bacterial community inside the M-UASB, during the recovery period. For overall design purposes, optimum operating HRTs of 1 and 2 d, with an internal recycle rate of 1.6 and 2.5 times the influent flow rate, are recommended for A- and M-UASBs, respectively; a conservative organic loading rate of 19 kg COD (total)/(m3∙d) is suggested. Finally, the optimum HRTA-UASB/HRTM-UASB ratio was found to be about 0.63 and HRTA-UASB/HRTsystem was 0.38, which are within the boundaries of this research project. Key words: anaerobic sludge treatment, design criteria, optimum system loading capacity, two-phase anaerobic stabilization, upflow anaerobic sludge blanket.


Sign in / Sign up

Export Citation Format

Share Document