scholarly journals Anaerobic digestion of the organic fraction of municipal solid waste in a two-stage membrane process

2009 ◽  
Vol 60 (8) ◽  
pp. 1965-1978 ◽  
Author(s):  
A. P. Trzcinski ◽  
D. C. Stuckey

A batch of the Organic Fraction of Municipal Solid Waste (OFMSW) was treated in a two-step process with effluent recirculation comprising a novel hydrolytic reactor (HR) followed by a Submerged Anaerobic Membrane Bioreactor (SAMBR) operating at a stable permeate flux of 5.6 L/m2 hr (LMH). A soluble COD removal higher than 95% was obtained from the SAMBR. The soluble COD as well as the Total Suspended Solids (TSS) did not build up due to efficient hydrolysis inside the SAMBR, and no VFA accumulation occurred due to the complete retention of methanogens by the membrane as well as the formation of syntrophic associations. Because of the microfiltration membrane in the second reactor a stabilized leachate was obtained from the very first days of the treatment and the highly stable process enabled shorter treatment periods compared to traditional leach bed processes. This experiment showed that the recycle of the stabilised leachate does not lead to a build up of SCOD. Size exclusion chromatography analysis confirmed that high molecular weight compounds were completely degraded and did not appear in the SAMBR permeate, and that low molecular weight fulvic-like and medium MW material were present in the permeate of the SAMBR but their concentration remained stable with time.

Author(s):  
Antonio Giménez-Lorang ◽  
José Ramón Vázquez-Padín ◽  
Cecilia Dorado-Barragán ◽  
Gloria Sánchez-Santos ◽  
Sandra Vila-Armadas ◽  
...  

Conventional aerobic biological treatments of digested organic fraction of municipal solid waste (OFMSW) slurries–usually conventional activated sludge or aerobic membrane bioreactor (AeMBR)–are inefficient in terms of energy and economically costly because of the high aeration requirements and the high amount of produced sludge. In this study, the supernatant obtained after the anaerobic digestion of OFMSW was treated in a mesophilic demo-scale anaerobic membrane bioreactor (AnMBR) at cross flow velocities (CFVs) between 1 and 3.5 m⋅s–1. The aim was to determine the process performance of the system with an external ultrafiltration unit, in terms of organic matter removal and sludge filterability. In previous anaerobic continuous stirred tank reactor (CSTR) tests, without ultrafiltration, specific gas production between 40 and 83 NL CH4⋅kg–1 chemical oxygen demand (COD) fed and removals in the range of 10–20% total COD (tCOD) or 59–77% soluble COD (sCOD) were obtained, for organic loading rates (OLR) between 1.7 and 4.4 kg COD⋅m–3reactor d–1. Data helped to identify a simplified model with the aim of understanding and expressing the process performance. Methane content in biogas was in the range of 74–77% v:v. In the AnMBR configuration, the COD removal has been in the ranges of 15.6–38.5 and 61.3–70.4% for total and sCOD, respectively, with a positive correlation between solids retention time (SRT, ranging from 7.3 to 24.3 days) and tCOD removal. The constant used in the model expressing inhibition, attributable to the high nitrogen content (3.6 ± 1.0 g N-NH4+⋅L–1), indicated that this inhibition decreased when SRT increased, explaining values measured for volatile fatty acids concentration, which decreased when SRT increased and OLR, measured per unit of volatile suspended solids in the reactor, decreased. The alkalinity was high enough to allow a stable process throughout the experiments. Constant CFV operation resulted in excessive fouling and sudden trans-membrane pressure (TMP) increases. Nevertheless, an ultrafiltration regime based on alternation of CFV (20 min with a certain CFVi and then 5 min at CFVi + 1 m⋅s–1) allowed the membranes to filter at a flux (standardized at 20°C temperature) ranging from 2.8 to 7.3 L⋅m–2⋅h–1, over 331 days of operation, even at very high suspended solids concentrations (>30 g total suspended solids⋅L–1) in the reactor sludge. This flux range confirms that fouling is the main issue that can limit the spread of AnMBR potential for the studied stream. No clear correlation was found between CFV or SRT vs. fouling rate, in terms of either TMP⋅time–1 or permeability⋅time–1. As part of the demo-scale study, other operational limitations were observed: irreversible fouling, scaling (in the form of struvite deposition), ragging, and sludging. Because ragging and sludging were also observed in the existing AeMBR, it can be stated that both are attributable to the stream and to the difficulty of removing existing fibers. All the mentioned phenomena could have contributed to the high data dispersion of experimental results.


2016 ◽  
Vol 2 (2) ◽  
pp. 39-44
Author(s):  
Oscar Cabeza ◽  
◽  
Alfredo Alonso ◽  
Yoel Lastre ◽  
Jorge Medina ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jon Kepa Izaguirre ◽  
Leire Barañano ◽  
Sonia Castañón ◽  
José A. L. Santos ◽  
M. Teresa Cesário ◽  
...  

AbstractThe management of municipal solid waste is a major logistic and environmental problem worldwide. Nonetheless, the organic fraction of municipal solid waste (OFMSW) is a valuable source of nutrients which can be used for a variety of purposes, according to the Circular Economy paradigm. Among the possible applications, the bioproduction of a biodegradable polyester, poly(3-hydroxybutyrate) [P(3HB)], using OFMSW as carbon platform is a promising strategy. Here, an economic and environmental assessment of bacterial P(3HB) production from OFMSW is presented based on previously published results. The SuperPro Designer® software was used to simulate P(3HB) production under our experimental parameters. Two scenarios were proposed depending on the fermentation medium: (1) enzymatic hydrolysate of OFMSW supplemented with glucose and plum waste juice; and (2) basal medium supplemented with glucose and plum waste juice. According to our results, both scenarios are not economically feasible under our experimental parameters. In Scenario 1, the low fermentation yield, the cost of the enzymes, the labour cost and the energy consumption are the factors that most contribute to that result. In Scenario 2, the cost of the extraction solvent and the low fermentation yield are the most limiting factors. The possibility of using process waste as raw material for the generation of other products must be investigated to enhance economic feasibility. From an environmental viewpoint, the photochemical oxidation potential (derived from the use of anisole as extraction solvent) and the generation of acid rain and global warming effect (caused by the burning of fuels for power generation) are the most relevant impacts associated to P(3HB) production under our experimental parameters.


Sign in / Sign up

Export Citation Format

Share Document