Effect of the addition of fatty by-products from the refining of vegetable oil on methane production in co-digestion

2012 ◽  
Vol 66 (10) ◽  
pp. 2237-2242 ◽  
Author(s):  
M. Torrijos ◽  
P. Sousbie ◽  
L. Badey ◽  
F. Bosque ◽  
J. P. Steyer

The purpose of this work was to investigate the effects of the addition of by-products from the refining of vegetable oil on the behavior of co-digestion reactors treating a mixture of grass, cow dung and fruit and vegetable waste. Three by-products were used: one soapstock, one used winterization earth and one skimming of aeroflotation of the effluents. Three 15 l reactors were run in parallel and fed five times a week. In a first phase of 4 weeks, the three reactors were fed with the co-digestion substrates alone (grass, cow dung and fruit and vegetable waste) at an organic loading rate (OLR) of 1.5 g VS/kg d (VS: volatile solids). Then, a different by-product from the refining of oil was added to the feed of each reactor at an OLR of 0.5 g VS/kg d, generating a 33% increase in the OLR. The results show that the addition of by-products from the refining of oil is an efficient way of increasing the methane production of co-digestion reactors thanks to high methane yield of such by-products (0.69–0.77 l CH4/g VS loaded). In fact, in this work, it was possible to raise the methane production of the reactors by about 60% through a 33% increase in the OLR thanks to the addition of the by-products from the refining of vegetable oil.

2011 ◽  
Vol 64 (2) ◽  
pp. 320-325 ◽  
Author(s):  
J. Gustavsson ◽  
B. H. Svensson ◽  
A. Karlsson

The aim of this study was to investigate the effect of trace element supplementation on operation of wheat stillage-fed biogas tank reactors. The stillage used was a residue from bio-ethanol production, containing high levels of sulfate. In biogas production, high sulfate content has been associated with poor process stability in terms of low methane production and accumulation of process intermediates. However, the results of the present study show that this problem can be overcome by trace element supplementations. Four lab-scale wheat stillage-fed biogas tank reactors were operated for 345 days at a hydraulic retention time of 20 days (37 °C). It was concluded that daily supplementation with Co (0.5 mg L−1), Ni (0.2 mg L−1) and Fe (0.5 g L−1) were required for maintaining process stability at the organic loading rate of 4.0 g volatile solids L−1 day−1.


Author(s):  
Dae-Yeol Cheong ◽  
Jeffrey Todd Harvey ◽  
Jinsu Kim ◽  
Changsoo Lee

As the global production of chicken manure has steadily increased, its proper management has become a challenging issue. This study examined process effluent from a bioethanol plant as a co-substrate for efficient anaerobic digestion of chicken manure. An anaerobic continuous reactor was operated in mono- and co-digestion modes by adding increasing amounts of the ethanol plant effluent (0%, 10%, and 20% (v/v) of chicken manure). Methanogenic performance improved significantly in terms of both methane production rate and yield (by up to 66% and 36%, respectively), with an increase in organic loading rate over the experimental phases. Correspondingly, the specific methanogenic activity was significantly higher in the co-digestion sludge than in the mono-digestion sludge. The reactor did not suffer any apparent process imbalance, ammonia inhibition, or nutrient limitation throughout the experiment, with the removal of volatile solids being stably maintained (56.3–58.9%). The amount of ethanol plant effluent appears to directly affect the rate of acidification, and its addition at ≥20% (v/v) to chicken manure needs to be avoided to maintain a stable pH. The overall results suggest that anerobic co-digestion with ethanol plant effluent may provide a practical means for the stable treatment and valorization of chicken manure.


Author(s):  
Ejiroghene Kelly Orhorhoro ◽  
Patrick Okechukwu Ebunilo ◽  
Godwin Ejuvwedia Sadjere

The rate at which feedstock is added to the anaerobic digester (AD) reactor has to be adjusted for the growth rate of methanogens bacteria. Increase in biogas yield is as a result of improved mathanogens forming bacteria. Under loading and over loading of feedstock in the AD reactor has effect on methanogens forming bacteria. If more feedstock is added than the bacteria are able to degrade, the process will become acidic. Feedstock has to been fed to the reactor at a uniform rate and volume. If feeding pattern has to change, this must be done gradually so that bacteria can adapt to the new conditions. For optimum biogas yield, required amount of feedstock must be added to the AD reactor. The aim of this research work is to determine the effect of organic loading rate (OLR) on biogas yield from food waste, water hyacinth, cow dung, waste water from abattoir, poultry dropping and pig dung. The experimental set up comprises of single stage and three-stage continuous AD reactors. The same quantity and composition of feedstock were used and this was subjected to a variation of OLR 0.5 kg/m3(1.5 kg/m3, 2 kg/m3, 2.5 kg/m3, and 3 kg/m3). The experiment was conducted within a mesophilic temperature range of 36°C-37°C, percentage total solid (%TS) of 9.98% and percentage volatile solid (%VS) of 78%. pH meter was used to monitored the daily pH reading of the slurry. It was observed that the quantity of biogas yield from the feedstock increases with increasing organic load rate to the optimum value of 1.5 kg/m3and started decreasing above the optimum value for a single stage AD reactor but this was not the case for the three-stages continuous AD reactors that experienced continuous increase in biogas yield with a successive increase in OLR from 1-5 kg/m3-3.0 kg/m3.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Patrice Ramm ◽  
Carsten Jost ◽  
Elisabeth Neitmann ◽  
Ulrich Sohling ◽  
Oliver Menhorn ◽  
...  

The use of recently developed magnetic foam glass particles for immobilization of microbial biomass was tested. The effect of the particles was illustrated at the production of biogas from sugar beet silage as the sole substrate. Lab-scale fermentation experiments were conducted using a mesophilic completely stirred tank reactor and a magnetic separator. Microscopic analysis revealed biofilm coverage of 50–60% on the surface of the particles within 110 days. It was possible to recover 76.3% of the particles from fermentation effluent by means of a separation procedure based on magnetic forces. Comparing a particle charged reactor with a control reactor showed a small performance gain. The methane rate was increased from1.18±0.09to1.25±0.06 L L−1 d−1and the methane yield was increased from0.302±0.029to0.318±0.022 L g−1(volatile solids) at an organic loading rate of3.93±0.22 g L−1 d−1(volatile solids). Maximum methane rates of 1.42 L L−1d−1at an organic loading rate of 4.60 g (volatile solids) L−1 d−1(reactor including magnetic particles) and 1.34 L L−1 d−1at 3.73 g L−1 d−1(control reactor) were achieved. Based on the results, it can be concluded that the use of magnetic particles could be an attractive option for the optimization of biogas production.


2012 ◽  
Vol 65 (1) ◽  
pp. 53-59 ◽  
Author(s):  
R. Chamy ◽  
C. León ◽  
E. Vivanco ◽  
P. Poirrier ◽  
C. Ramos

In this work the anaerobic monodigestion for the treatment of turkey manure was evaluated, without its codigestion with another substrate. The effect of the organic loading rate (OLR) and the substrate concentration (high total solids (TS) concentration) or product concentration (high volatile fatty acids (VFA) and/or ammonia (NH3-N) concentrations) was studied. The results show that for a continuous stirred tank reactor (CSTR) operation, a maximum of 40 g/L of TS and 4.0 g/L of ammonium (NH4+) was required. In addition, the maximum organic loading rate (OLR) will not exceed 1.5 kg VS/m3d. Higher TS and NH4+ concentrations and OLR lead to a reduction on the methane productivity and volatile solids (VS) removal. During the CSTR operation, a high alkalinity concentration (above 10 g/L CaCO3) was found; this situation allowed maintaining a constant and appropriate pH (close to 7.8), despite the VFA accumulation. In this sense, the alkalinity ratio (α) is a more appropriate control and monitoring parameter of the reactor operation compared to pH. Additionally, with this parameter a VS removal of 80% with a methane productivity of 0.50 m3CH4/m3Rd is achieved.


2013 ◽  
Vol 779-780 ◽  
pp. 1242-1245
Author(s):  
Dan Han ◽  
Ming Yue Zheng ◽  
Ming Xia Zheng ◽  
Qun Hui Wang ◽  
Kai Jun Wang

Continuous flow anaerobic fermentation experiments of fruit and vegetable waste were carried out in four laboratory-scale anaerobic acidification reactors with pH controlling system. The organic loading rate (OLR) were 13, 20, 30 kg COD/m3 d gradually and a hydraulic retention time (HRT) of 3 days were constantly. The results, obtained from the three stages operation, showed that hydrolysis rate increased along with the rising of OLR, to the highest of 79.3%, and acidification rate decreased on the contrary, showing that the activity of acidification bacteria was inhibited by high OLR. High pH value contributed to the process of hydrolysis and acidification especially under high OLR in the acidogenic phase of the fruit and vegetable waste.


2018 ◽  
Vol 29 (7) ◽  
pp. 1130-1141 ◽  
Author(s):  
Emmanuel Alepu Odey ◽  
Kaijun Wang ◽  
Zifu Li ◽  
Ruiling Gao

This study investigated the efficiency of biogas production from sewage concentrate through anaerobic digestion. A continuous stirred tank reactor with a 900-mL working volume was used. The experiment was designed to investigate the influence of organic loading rate on the efficiency of biogas production and to determine the most suitable organic loading rate condition for methane production from sewage concentrate by using continuous stirred tank reactor. The reactor was operated at different organic loading rates of 1.8, 0.8, and 0.6 gCOD/(L.d). The methane composition of the biogas produced from the treatment organic loading rate (OLR). The beginning of the experiment recorded low methane production because of the high organic loading rate. However, the later part of the experiment recorded high and stable biogas production because of the relatively low OLR. Results suggested that a 0.6 gCOD/(L.d) OLR was the most efficient setup parameter for ideal methane production from sewage concentrate by using continuous stirred tank reactor.


Sign in / Sign up

Export Citation Format

Share Document