Performance and metabolic aspects of a novel enhanced biological phosphorus removal system with intermittent feeding and alternate aeration

2013 ◽  
Vol 69 (8) ◽  
pp. 1612-1619 ◽  
Author(s):  
Paraschos Melidis ◽  
Anastasios G. Kapagiannidis ◽  
Spyridon Ntougias ◽  
Konstantina Davididou ◽  
Alexander Aivasidis

A novel enhanced biological phosphorus removal (EBPR) system, which combined the intermittent feeding design with an anaerobic selector, was examined using on-line oxidation reduction potential (ORP), nitrate and ammonium probes. Two experimental periods were investigated: the aerobic and anoxic phases were set at 40 and 20 minutes respectively for period I, and set at 30 and 30 minutes for period II. Chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and P removal were measured as high as 87%, 96% and 93% respectively, while total Kjeldahl nitrogen (TKN) and NH4+ removal averaged 85% and 91%. Two specific denitrification rates (SDNRs), which corresponded to the consumption of the readily biodegradable and slowly biodegradable COD, were determined. SDNR-1 and SDNR-2 during period I were 0.235 and 0.059 g N g−1 volatile suspended solids (VSS) d−1 respectively, while the respective rates during period II were 0.105 and 0.042 g N g−1 VSS d−1. The specific nitrate formation and ammonium oxidizing rates were 0.076 and 0.064 g N g−1 VSS d−1 for period I and 0.065 and 0.081 g N g−1 VSS d−1 for period II respectively. The specific P release rates were 2.79 and 4.02 mg P g−1 VSS h−1 during period I and II, while the respective anoxic/aerobic uptake rates were 0.42 and 0.55 mg P g−1 VSS h−1. This is the first report on an EBPR scheme using the intermittent feeding strategy.

2003 ◽  
Vol 48 (1) ◽  
pp. 87-94 ◽  
Author(s):  
B. Lesjean ◽  
R. Gnirss ◽  
C. Adam ◽  
M. Kraume ◽  
F. Luck

The enhanced biological phosphorus removal (EBPR) process was adapted to membrane bioreactor (MBR) technology. One bench-scale plant (BSP, 200-250 L) and two pilot plants (PPs, 1,000-3,000 L each) were operated under several configurations, including pre-denitrification and post-denitrification without addition of carbon source, and two solid retention times (SRT) of 15 and 26 d. The trials showed that efficient Bio-P removal can be achieved with MBR systems, in both pre- and post-denitrification configurations. EBPR dynamics could be clearly demonstrated through batch-tests, on-line measurements, profile analyses, P-spiking trials, and mass balances. High P-removal performances were achieved even with high SRT of 26 d, as around 9 mgP/L could be reliably removed. After stabilisation, the sludge exhibited phosphorus contents of around 2.4%TS. When spiked with phosphorus (no P-limitation), P-content could increase up to 6%TS. The sludge is therefore well suited to agricultural reuse with important fertilising values. Theoretical calculations showed that increased sludge age should result in a greater P-content. This could not be clearly demonstrated by the trials. This effect should be all the more significant as the influent is low in suspended solids.


1993 ◽  
Vol 28 (10) ◽  
pp. 377-385 ◽  
Author(s):  
K. Moriyama ◽  
M. Takahashi ◽  
Y. Harada

Some experiences concerning a retrofit design and operation for nutrients removal in small extended aeration plants are presented. In this study a new biological phosphorus removal process as well as a biological nitrogen removal process based on a sequential oxic-anoxic-oxic process is investigated. The denitrification in the first oxic zone has a high removing effect for nitrogen, and the oxidation reduction potential (ORP) value and dissolved oxygen (DO) concentration are useful indexes to maintain the optimum conditions of the first oxic zone for simultaneous denitrification. It is verified that the simultaneous denitrification can alleviate the alkalinity deficit problem against full nitrification by a stoichiometric analysis of alkalinity throughout the entire process. Additionally, a biological phosphorus removal process which uses a sludge blanket zone of secondary settling tank for phosphorus release is proposed.


1995 ◽  
Vol 22 (2) ◽  
pp. 260-269 ◽  
Author(s):  
D. G. Wareham ◽  
K. J. Hall ◽  
D. S. Mavinic

This research discusses two strategies for adding acetate to sequencing batch reactors operating as biological removal (Bio-P) systems. The control (fixed-time) reactor adds the acetate at a set time of 1 h 25 min, which is an assumed time for complete denitrification. The experimental (real-time) reactor adds the acetate when a computer detects the disappearance of nitrates, as indicated by a distinctive "breakpoint" or "kink" in the oxidation-reduction potential versus time profile. This control strategy is therefore based upon a known time for complete denitrification. The time-of-occurrence of the nitrate breakpoint is utilized in the development of a screening protocol for interpreting the behaviour (in terms of nitrate reactions) for reactors operating in biological phosphorus removal mode. The protocol involves categorizing the timing of the nitrate breakpoint into two groupings. A "failure" category corresponds to acetate being added prior to the breakpoint, because, in these cases, the acetate is used partially for denitrification and partially for Bio-P carbon storage. A "success" category corresponds to breakpoints occurring prior to the addition of acetate. In such cases, acetate is used solely for carbon storage by Bio-P organisms. Key words: oxidation-reduction potential, biological phosphorus removal, sequencing batch reactor, real-time computer control.


2021 ◽  
Author(s):  
Guanglei Qiu ◽  
Yingyu Law ◽  
Rogelio Zuniga-Montanez ◽  
Yang Lu ◽  
Samarpita Roy ◽  
...  

AbstractRecent research has shown enhanced biological phosphorus removal (EBPR) from municipal wastewater at warmer temperatures around 30°C to be stable in both laboratory-scale reactors and full-scale treatment plants. In the context of a changing climate, the feasibility of EBPR at even higher temperatures is of interest. We operated two lab-scale EBPR sequencing batch reactors with alternating anaerobic and aerobic phases for over 300 days at 30°C and 35°C, respectively, and followed the dynamics of the communities of phosphorus accumulating organisms (PAOs) and competing glycogen accumulating organisms (GAOs) using a combination of 16S rRNA gene metabarcoding, quantitative PCR and fluorescent in-situ hybridization analyses. Stable and nearly complete P removal was achieved at 30°C; similarly, long term P removal was stable at 35°C with effluent PO43−-P concentrations < 0.5 mg/L on half of all monitored days. Diverse and abundant Ca. Accumulibacter amplicon sequence variants were closely related to those found in temperate environments, suggesting that EBPR at this temperature does not require a highly specialized PAO community. The slow-feeding strategy used effectively limited the carbon uptake rates of GAOs, allowing PAOs to outcompete GAOs at both temperatures. Candidatus Competibacter was the main GAO, along with cluster III Defluviicoccus members. These organisms withstood the slow-feeding regime, suggesting that their bioenergetic characteristics of carbon uptake differ from those of their tetrad-forming relatives. This specific lineage of GAOs warrants further study to establish how complete P removal can be maintained. Comparative cycle studies at two temperatures for each reactor revealed higher activity of Ca. Accumulibacter when the temperature was increased from 30°C to 35°C, suggesting that the stress was a result of the higher carbon (and/or P) metabolic rates of PAOs and GAOs, the resultant carbon deficiency, and additional community competition. An increase in the TOC to PO43--P ratio (from 25:1 to 40:1) effectively eased the carbon deficiency and benefited the proliferation of PAOs. In general, the slow-feeding strategy and sufficiently high carbon input benefited a high and stable EBPR at elevated temperature and represent basic conditions for full-scale applications.


2009 ◽  
Vol 59 (5) ◽  
pp. 857-865 ◽  
Author(s):  
Y. Cao ◽  
C. M. Ang ◽  
K. C. Chua ◽  
F. W. Woo ◽  
H. Chi ◽  
...  

This paper presents the investigation results of retrofitting an anoxic selector to an anaerobic selector through stepwise reduction of air supply in a full-scale activated sludge process with a focus on enhanced biological phosphorus removal (EBPR). The process experienced gradual shift from a Ludzack-Ettinger (LE) to an anaerobic-anoxic-oxic (A2O) process and subsequently, an anaerobic-oxic (A/O) process. The major findings are: (i) the average influent-based PO43−-P release in the anaerobic selector compartment was 16.3 mg P l−1 and that in the secondary clarifier was 1.7 mg P l−1. 75% of the SCOD and 93% of the acetic acid in the primary effluent were taken up in the anaerobic selector compartment, respectively; (ii) PO43−-P uptake contributed by both aerobic and denitrifying phosphorus accumulating organisms (DPAOs) occurred mainly in the first and second aerobic lanes together with simultaneous nitrification and denitrification (SND) while there was not much contribution from the last aerobic lane; (iii) The average PO43−-P concentration of the final effluent was 2.4 mg P l−1 corresponding to a removal efficiency of 85%; (iv) the SVI was satisfactory after retrofitting; and (v) the increase of NH4+-N in the final effluent from the commencement to the completion of the retrofitting resulted in an approximate 40–50% reduction in oxygen demand and a significant aeration energy saving was achieved.


2001 ◽  
Vol 28 (4) ◽  
pp. 617-626 ◽  
Author(s):  
Donald S Mavinic ◽  
Venkatram Mahendraker ◽  
Barry Rabinowitz ◽  
Alexandru C Dumitrescu ◽  
Frederic A Koch ◽  
...  

In this work, pilot-scale, on-line, short-HRT fixed-film prefermenter systems were evaluated using Ringlace and Kaldnes fixed-film media for short chain volatile fatty acid (SCVFA) production, with screened raw domestic wastewater and primary effluent. In comparison to the control reactors without media, significant levels of SCVFA were generated in the fixed-film prefermenters. For the design considered in this study, the Ringlace media performed well, whereas the Kaldnes media resulted in clogging. The Ringlace media data show that, for a 60-min HRT, on-line prefermenter systems produced 11 and 5.5 mg/L of SCVFA (as acetic acid) with screened raw wastewater and primary effluent, respectively. Such a low HRT might translate into potential cost savings (up to 25%) in providing SCVFA to enhanced biological phosphorus removal (EBPR) plants and could lead to a completely new generation of prefermenter designs.Key words: domestic sewage, enhanced biological phosphorus removal systems, fixed film, prefermenter, short chain volatile fatty acids.


2018 ◽  
Vol 78 (10) ◽  
pp. 2119-2130 ◽  
Author(s):  
Erika Varga ◽  
Hélène Hauduc ◽  
James Barnard ◽  
Patrick Dunlap ◽  
Jose Jimenez ◽  
...  

Abstract This paper summarizes recent developments in biological phosphorus removal modelling, with special attention to side-stream enhanced biological phosphorus removal (S2EBPR) systems on which previous models proved to be ineffective without case-by-case parameter adjustments. Through the research and experience of experts and practitioners, a new bio-kinetic model was developed including an additional group of biomass (glycogen accumulating organisms – GAOs) and new processes (such as aerobic and anoxic maintenance for PAO and GAO; enhanced denitrification processes; fermentation by PAOs which – along with PAO selection – is driven by oxidation-reduction potential (ORP)). This model successfully described various conditions in laboratory measurements and full plant data. The calibration data set is provided by Clean Water Services from Rock Creek Facility (Hillsboro, OR) including two parallel trains: conventional A2O and Westbank configurations, allowing the model to be verified on conventional and side-stream EBPR systems as well.


Sign in / Sign up

Export Citation Format

Share Document