Use of a three-dimensional model to predict heavy metal (copper) fluxes in the Oujiang estuary

2014 ◽  
Vol 69 (6) ◽  
pp. 1334-1343 ◽  
Author(s):  
Shasha Lu ◽  
Ruijie Li ◽  
Xiaoming Xia ◽  
Jun Zheng

Measuring pollutant concentrations in major tributaries is the standard method for establishing pollutant fluxes to the sea. However, this method is costly and difficult, and may be subject to a great deal of uncertainty due to the presence of unknown sources. This uncertainty presents challenges to managers and scientists in reducing contaminant discharges to water bodies. As one less costly method, a three-dimensional model was developed and used to predict pollutant fluxes to the sea. The sorptive contaminant model was incorporated into hydrodynamic and sediment models. Adsorption–desorption of copper by sediments in the Oujiang estuary were described using Henry's law. The model was validated using measured data for water surface elevations, flow velocity/direction, suspended sediment concentrations, and the proportion of copper sorbed to sediment. The validated model was then applied to predict fluxes of copper. Combined with the measured data, the copper concentration in the Oujiang River discharge was calculated as 13.0 μg/L and copper fluxes were calculated as 52 t in 2010. This copper flux prediction was verified using measured dissolved copper concentrations. Comparisons between the modeled and measured results showed good agreement at most stations, demonstrating that copper flux prediction in the Oujiang estuary was reasonably accurate.

2011 ◽  
Vol 462-463 ◽  
pp. 1206-1211 ◽  
Author(s):  
Seyyed Mohammad Javadi ◽  
Mohammad Moghiman ◽  
Mohammad Reza Erfanian ◽  
Naseh Hosseini

A large number of rubber products are formed into their final shape by vulcanization. In particular, curing process of rubber is the final step in manufacturing many rubber products and determines both the quality of the resulting product as well as production costs. This paper is devoted to the simulation of rubber curing process in a three-dimensional model. The effects of final temperature of mold are investigated on curing process and quality of final product. The results were compared with the experimentally measured data, which confirmed the accuracy and applicability of the method.


1983 ◽  
Vol 5 (3) ◽  
pp. 253-279 ◽  
Author(s):  
Mitchell M. Goodsitt ◽  
Ernest L. Madsen ◽  
James A. Zagzebski

A three-dimensional model for production of gray scale texture in ultrasound B-mode images is described. The model computes time-dependent echo signals resulting from scattering of acoustic pulses by particles randomly distributed in an attenuating medium and transforms these signals into a gray scale image. Specific transducer and pulser-receiver characteristics are accounted for, as well as the three-dimensional nature of the problem, without loss of computational efficiency. The model generates texture that closely corresponds to that found experimentally in ultrasound images of tissue-mimicking phantoms. The dependence of the texture upon the depth of the region that was scanned and on the characteristics of the transducer-receiver system were clearly demonstrated. Good agreement between theory and experiment was found for the texture in phantoms containing simulated spherical low-scatter tumors.


Author(s):  
Yasuo Niida ◽  
Yasuo Niida ◽  
Norikazu Nakashiki ◽  
Norikazu Nakashiki ◽  
Shin’ichi Sakai ◽  
...  

In this study, a three-dimensional numerical model for cold water jets in the coastal region is developed for the calculation of not only the initial mixing but also horizontal dispersion above the seabed. The computed velocities and temperatures were compared with the measurements obtained in the scaled hydraulic experiment. The good agreement with measurements confirms the model provides appropriate results for cold water dispersion. Our numerical results indicate that coastal topography is the most important factor in determining areas influenced by discharged cold water.


2019 ◽  
Vol 16 (4) ◽  
pp. 172988141986507
Author(s):  
Marián Hruboš ◽  
Dušan Nemec ◽  
Aleš Janota ◽  
Rastislav Pirník ◽  
Emília Bubeníková ◽  
...  

This article deals with the design of an automated system for creating a three-dimensional model of the environment with its texture. The method for creating a three-dimensional model of the environment is based on the use of a two-dimensional scanner for which the supporting hardware has been designed and constructed. The whole system extends the use of a two-dimensional scanner that is embedded in a robotic system. Supporting hardware rotates the scanner around the scan axis. This will create a three-dimensional model of the environment using a two-dimensional scanner. Thus, the resulting three-dimensional scan is formed by subsequent two-dimensional scans, each shifted with respect to the previous one. It was necessary to design the appropriate software for hardware management to control the movement of the engine, the scanner, and to process the measured data. The proposed system can be placed on various exploration robotic systems that map the space using the proposed method. Wheeled, band robotic systems or drones can be used to explore hard-to-reach environment.


Author(s):  
Yasuo Niida ◽  
Yasuo Niida ◽  
Norikazu Nakashiki ◽  
Norikazu Nakashiki ◽  
Shin’ichi Sakai ◽  
...  

In this study, a three-dimensional numerical model for cold water jets in the coastal region is developed for the calculation of not only the initial mixing but also horizontal dispersion above the seabed. The computed velocities and temperatures were compared with the measurements obtained in the scaled hydraulic experiment. The good agreement with measurements confirms the model provides appropriate results for cold water dispersion. Our numerical results indicate that coastal topography is the most important factor in determining areas influenced by discharged cold water.


2017 ◽  
Vol 88 (10) ◽  
pp. 1173-1183 ◽  
Author(s):  
Akil Osman ◽  
Benny Malengier ◽  
Simon De Meulemeester ◽  
Jozef Peeters ◽  
Jan Vierendeels ◽  
...  

The main nozzle of an air jet loom plays an essential role in the weft insertion process. This role involves sucking the weft yarn from the prewinder and launching it into the reed. Simulating the dynamic behavior of the weft yarn inside the main nozzle involves fluid–structure interaction (FSI). In this work, one-way and two-way FSI simulations of air flow–yarn interaction inside a main nozzle have been performed. A three-dimensional model of the flexible weft yarn, consisting of a chain of line segments, and a two-dimensional axisymmetric model of the supersonic flow have been developed and coupled to perform these simulations. The results of the simulations are compared quantitatively and qualitatively with experimental results. Good agreement has been found between the results of the two-way FSI simulations and the experiment. The coupled fluid and structure models provide an effective numerical tool to optimize the geometry of the main nozzle based on the calculated motion and speed of the weft yarn.


2012 ◽  
Vol 532-533 ◽  
pp. 297-300
Author(s):  
Chang Li Song ◽  
Jing Ji

In order to verify correctness of two-dimensional axisymmetric finite element model, this paper carries out axial symmetry analysis of the steel ball shell by ANSYS software and 2-D finite element model is established. The radial and tangential stress distribution is acquired, through comparison with the theoretical solution, both are in good agreement. So it is feasible to simulate the three-dimensional model by finite element axisymmetrical two-dimensional model.


Sign in / Sign up

Export Citation Format

Share Document