Geographic information system-coupling sediment delivery distributed modeling based on observed data

2014 ◽  
Vol 70 (3) ◽  
pp. 495-501 ◽  
Author(s):  
S. E. Lee ◽  
S. H. Kang

Spatially distributed sediment delivery (SEDD) models are of great interest in estimating the expected effect of changes on soil erosion and sediment yield. However, they can only be applied if the model can be calibrated using observed data. This paper presents a geographic information system (GIS)-based method to calculate the sediment discharge from basins to coastal areas. For this, an SEDD model, with a sediment rating curve method based on observed data, is proposed and validated. The model proposed here has been developed using the combined application of the revised universal soil loss equation (RUSLE) and a spatially distributed sediment delivery ratio, within Model Builder of ArcGIS's software. The model focuses on spatial variability and is useful for estimating the spatial patterns of soil loss and sediment discharge. The model consists of two modules, a soil erosion prediction component and a sediment delivery model. The integrated approach allows for relatively practical and cost-effective estimation of spatially distributed soil erosion and sediment delivery, for gauged or ungauged basins. This paper provides the first attempt at estimating sediment delivery ratio based on observed data in the monsoon region of Korea.

AGROFOR ◽  
2018 ◽  
Vol 2 (1) ◽  
Author(s):  
El Mouatassime SABRI ◽  
Ahmed BOUKDIR ◽  
Rachid El MASLOUHI ◽  
Mustapha MABROUKI ◽  
Abdellah EL MAHBOUL ◽  
...  

This study was conducted in the Oued El Abid watershed upstream of the Bin ElOuidane dam, in Tadla-Azilal province (Morocco) to quantify the dam siltationrates. To assess the annual soil erosion and the sediment yield the universal soilloss equation (USLE) was used. A geographic information system (GIS) was usedto generate and integrate maps of the USLE factors. A spatial distribution of soilerosion in the Oued El Abid watershed was obtained. The soil erosion wasdetermined for each rural commune in order to identify the soil erosion hotspot andestimate the amount of soil that has been transported downstream (Bin El OuidaneDam). Soil erosion ranged from very limited values for flat and well covered areasto over 2100 t /ha/y in mountainous areas with sparse vegetation. The total annualsoil loss within the watershed is estimated at 19. 6 million tons per year. Anequation of sediment delivery ratio (SDR) based on river gradient was calculated.It was found that the value of SDR at the outlet of the watershed Oued El Abid was0. 65 with a sediment yield of 12. 74 million tons per year which affect thedurability of the dam.


Author(s):  
Mitiku Badasa Moisa ◽  
Daniel Assefa Negash ◽  
Biratu Bobo Merga ◽  
Dessalegn Obsi Gemeda

Abstract The impact of land-use land-cover (LULC) change on soil resources is getting global attention. Soil erosion is one of the critical environmental problems worldwide with high severity in developing countries. This study integrates the Revised Universal Soil Loss Equation model with a geographic information system to estimate the impacts of LULC conversion on the mean annual soil loss in the Temeji watershed. In this study, LULC change of Temeji watershed was assessed from 2000 to 2020 by using 2000 Landsat ETM+ and 2020 Landsat OLI/TIRS images and classified using supervised maximum likelihood classification algorithms. Results indicate that the majority of the LULC in the study area is vulnerable to soil erosion. High soil loss is observed when grassland and forest land were converted into cultivated land with a mean soil loss of 88.8 and 86.9 t/ha/year in 2020. Results revealed that about 6,608.5 ha (42.8%) and 8,391.8 ha (54.4%) were categorized under severe classes in 2000 and 2020, respectively. Accordingly, the soil loss severity class is directly correlated with the over-exploitation of forest resources and grasslands for agricultural purposes. These results can be useful for advocacy to enhance local people and stakeholder's participation toward soil and water conservation practices.


Author(s):  
Durga Bahadur Tiruwa ◽  
Babu Ram Khanal ◽  
Sushil Lamichhane ◽  
Bharat Sharma Acharya

Abstract Soil erosion is one of the gravest environmental threats to the mountainous ecosystems of Nepal. Here, we combined a Geographic Information System (GIS) with the Revised Universal Soil Loss Equation (RUSLE) to estimate average annual soil loss, map erosion factors, compare soil erosion risks among different land use types, and identify erosion hotspots and recommend land use management in the Girwari river watershed of the Siwalik Hills. The annual soil loss was estimated using RUSLE factors: rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), cover crops (C), and conservation practices (P), and erosion factors maps were generated using GIS. Results indicate highest total erosion occurring in hill forests (13,374.3 t yr–1) and lowest total erosion occurring in grasslands (2.9 t yr–1). Hill forests showed high to very severe erosion due to steepness of hills, open forest types, and minimal use of conservation practices. Also, erosion hotspots (>15 t ha–1 yr–1) occurred in only 4.2% of the watershed, primarily in steep slopes. Overall, these results provide important guidelines to formulate management plans and informed decisions on soil conservation at local to regional levels. While the study is the first effort to assess soil erosion dynamics in the Girwari river watershed, potential for application in other basins largely exists.


2019 ◽  
Vol 7 (2) ◽  
pp. 100-111
Author(s):  
Miskar Maini ◽  
Junita Eka Susanti

Standar permintaan engineering pesawat agar desain bangunan infrastruktur di area Air Strip Runway 2600 yang ada dapat mempunyai fungsi lain. Sedangkan kondisi lain sangat menentukan keselamatan karena lahan di sekitar Air Strip Runway 2600 Bandara Depati Amir (PGK) jika tidak ditutupi vegetasi seperti rumput, kondisi lain lahan yang belum ditutupi vegetasi di sekitar Air Strip Runway 2600 berpotensi akan mengalami erosi lahan, kemudian hasil erosi lahan ini akan terbawa oleh aliran air sehingga akan masuk ke saluran drainase yang akan menyebabkan sedimentasi pada saluran drainase tersebut, akhirnya akan berkurang efektifitas kinerja saluran drainase tersebut. Metode yang digunakan untuk memprediksi laju rata-rata erosi di area Air Strip Runway 2600 dengan memperhitungkan faktor erosivitas hujan, erodibilitas tanah, kemiringan lereng atau panjang lereng, pengelolaan tanaman dan konservasi tanah, yang masing masing tata guna lahan tersebut mengacu pada Masterplan Ultimate Bandara Depati Amir (PGK). Perhitungan dilakukan menggunakan persamaan USLE (Universal Soil Loss Equation) yang dikembangkan oleh Wischmeier dan Smith (1965, 1978), kemudian Sediment Delivery Ratio (SDR) dan Sediment Yield.Hasil penelitian ini, prediksi laju erosi permukaan pada area Air Strip Runway 2600 Bandara Depati Amir (PGK) tahun pertama yang mencapai 5,60 mm/tahun atau 100,76 Ton/Ha/tahun, laju erosi tahun kedua mencapai 3,38 mm/tahun atau 60,84 Ton/Ha/tahun dapat diklasifikasikan ke dalam kelas bahaya erosi sedang (kelas III) dan nilai SDR adalah sebesar 56,3%, nilai sediment yield (SR) pada tahun pertama sebesar 5.887,59 Ton/Tahun, pada tahun kedua ketika rumput pada area Air Strip telah tumbuh dengan sempurna terjadi penurunan hasil sediment yield yaitu nilai SR sebesar 3.554,85 Ton/Tahun.


Sign in / Sign up

Export Citation Format

Share Document