Biochemical characteristic along UBAF in a one-stage autotrophic nitrogen removal reactor

2016 ◽  
Vol 74 (11) ◽  
pp. 2656-2665
Author(s):  
Tao Liu ◽  
Dong Li ◽  
Jie Zhang

The Up-flow biological aerated filter (UBAF) based on a one-stage autotrophic nitrogen removal process has been widely investigated nowadays. In this work, the biochemical characteristic along the volcanic-filled UBAF reactor had been studied. The results indicate that short-rod, spherical and elliptical (averaged 0.2–1.0 μm) microorganisms with a specific irregular cauliflower profile existed in the system. Species identification showed Nitrosococcus- and Nitrosomonas-related aerobic ammonium-oxidizing bacteria (AerAOB) and Candidatus Kuenenia stuttgartiensis-like anaerobic ammonium-oxidizing bacteria (AnAOB) were the predominant functional bacteria that mixed with each other and showed no distinct niche in the system. However, the bioactivity of functional microorganisms displayed differently at different filter layers, with a better pollutant-removal activity in the lower parts than in the upper parts of the UBAF. In the lower parts, compact and small zooglea formed, whereas it trended to be larger and looser along the filter. Moreover, there was better biodiversity of AerAOB in the lower part, while AnAOB showed stable and low biodiversity along the filter.

2021 ◽  
Author(s):  
Chi Zhang ◽  
Lianze Yu ◽  
Miao Zhang ◽  
Jun Wu

Abstract The nitrate produced by the one-stage partial nitritation-anammox (PN/A) process can be removed through partial denitrification (PD) by adding carbon source. In this study, a 1D multi-population biofilm model was developed to evaluate the contribution of partial denitrification on the one-stage autotrophic nitrogen removal process at influent NH4+ = 100 mg N/L. The dynamic simulation that was carried out to investigate the effect of nitrite-oxidizing bacteria (NOB) revealed that PD contributed to the reactor to obtain total nitrogen removal efficiency (TNR) of above 90% and the effluent nitrate was significantly decreased with the absence of NOB. However, PD decreased TNR of the one-stage PN/A process with the presence of NOB. Increased influent chemical oxygen demand (COD) widened the dissolved oxygen (DO) range required for high TNR whether NOB were present or not. The steady-state simulation results showed that NOB were always absent in the granules at high DO and COD levels and the optimum DO > 0.5 mg/L when influent COD was over 50 mg/L. Besides, higher influent COD/NH4+ (C/N) and larger granule diameter (diameter > 1600 µm) were contributed to widening the range of DO required for high TNR. The nitrogen removal contribution of anammox bacteria (AMX) was significantly higher than denitrification in the reactor.


2001 ◽  
Vol 43 (1) ◽  
pp. 269-276 ◽  
Author(s):  
N. Puznava ◽  
M. Payraudeau ◽  
D. Thornberg

The aim of this article is to present a new biological aerated filter (BAF) for nitrogen removal based on simultaneous nitrification and denitrification. Contrary to the systems which integrate both an aerated and a non-aerated zone to allow complete nitrogen removal in one compact or two different units (pre-denitrification and nitrification), this upflow BAF system is based on the principle of simultaneous nitrification and denitrification since the filter is completely aerated. The denitrification process is possible due to the diffusion effect which dominates biofilm processes. The real time aeration control allows us to maintain a low dissolved oxygen value (0.5 to 3 mg O2/l). In this case, the biofilm will not be fully (or less) penetrated with oxygen and denitrification will be carried out in a large part of the biofilm. Therefore, nitrification and denitrification is running simultaneously in different depths of the biofilm. By using 50% less air this BAF gave the same results (less than 20mg TN/l) on pilot plant as a classical nitrification and denitrification BAF (Toettrup et al., 1994). Less recirculation was necessary to achieve the same denitrification.


Chemosphere ◽  
2017 ◽  
Vol 175 ◽  
pp. 482-489 ◽  
Author(s):  
Xi-Xi Wang ◽  
Fang Fang ◽  
You-Peng Chen ◽  
Jin-Song Guo ◽  
Kai Li ◽  
...  

2012 ◽  
Vol 118 ◽  
pp. 399-406 ◽  
Author(s):  
Tao Liu ◽  
Dong Li ◽  
Huiping Zeng ◽  
Xiangkun Li ◽  
Taotao Zeng ◽  
...  

2015 ◽  
Vol 36 (14) ◽  
pp. 1819-1827 ◽  
Author(s):  
Kai Li ◽  
Fang Fang ◽  
Jinsong Guo ◽  
Youpeng Chen ◽  
Jixiang Yang ◽  
...  

2007 ◽  
Vol 55 (1-2) ◽  
pp. 9-17 ◽  
Author(s):  
J.H. Ha ◽  
S.K. Ong

A 104-mm (4-inch) diameter pilot-scale biological aerated filter (BAF) with a media depth of 2.5 m (8.3 feet) was operated with an anaerobic, anoxic and oxic zone at a temperature of 23°C. The medium for the anaerobic and anoxic zones was 10 mm diameter sand while the medium for the oxic zone was 5 mm diameter sand. The influent sCOD and total nitrogen concentrations in the feedwater were approximately 250 mg/L and 35 mg N/L, respectively. sCOD removal at optimum hydraulic retention time (HRT) of 3 h with recirculation rates of 100, 200 and 300% in the column was above 96%. Nitrification was found to be more than 96% for 3 h HRT at 200 and 300% recirculation. Total nitrogen removal was consistent at more than 80% for 4 and 6 h HRT at 300% recirculation. For 3 h HRT and 300% recirculation, total nitrogen removal was approximately 79%. The ammonia loading rates for maximum ammonia removed were 0.15 and 0.19 kg NH3-N/m3-day for 100 and 200% recirculation, respectively. The experimental results demonstrated that the BAF can be operated at an HRT of 3 h with 200–300% recirculation rates with more than 96% removal of sCOD and ammonia and at least 75% removal of total nitrogen.


Sign in / Sign up

Export Citation Format

Share Document