Performance of one-stage autotrophic nitrogen removal in a biofilm reactor with low C/N ratio

2015 ◽  
Vol 36 (14) ◽  
pp. 1819-1827 ◽  
Author(s):  
Kai Li ◽  
Fang Fang ◽  
Jinsong Guo ◽  
Youpeng Chen ◽  
Jixiang Yang ◽  
...  
Chemosphere ◽  
2017 ◽  
Vol 175 ◽  
pp. 482-489 ◽  
Author(s):  
Xi-Xi Wang ◽  
Fang Fang ◽  
You-Peng Chen ◽  
Jin-Song Guo ◽  
Kai Li ◽  
...  

2020 ◽  
Vol 81 (5) ◽  
pp. 1071-1079
Author(s):  
Caimeng Wang ◽  
Lirong Lei ◽  
Fangrui Cai ◽  
Youming Li

Abstract In this study, the completely autotrophic nitrogen removal over nitrite (CANON) process was initiated in a sequencing batch biofilm reactor (SBBR). Then the reactor was operated under different IC/N ratios. The total inorganic nitrogen removal efficiency (TINRE) at IC/N ratios of 0.75, 1.0, 1.25, 1.5 and 2.0 were 37.0 ± 11.0%, 58.9 ± 10.2%, 73.9 ± 3.2%, 73.6 ± 1.8% and 72.6 ± 2.0%, respectively. The suitable range of IC/N ratio in this research is 1.25–2.0. The poor nitrogen removal performance at IC/N ratio of 0.75 was due to the lack of growth substrate for AnAOB and low pH simultaneously; at IC/N ratio of 1.0 this was because the substrate concentration was insufficient for fully recovering the AnAOB activities. Microbial analysis indicated that Nitrosomonas, Nitrospira and Candidatus Brocadia were the main ammonium oxidation bacteria (AOB), nitrite oxidation bacteria (NOB) and anammox bacteria (AnAOB), respectively. In addition, at IC ratios of 1.25 or higher, denitrification was promoted with the rise of IC/N ratio, which might be because the change of IC concentrations caused cell lysis of microorganisms and provided organic matter for denitrification.


2018 ◽  
Vol 93 (10) ◽  
pp. 2931-2941 ◽  
Author(s):  
Tiago Rogerio Vitor Akaboci ◽  
Frederic Gich ◽  
Maël Ruscalleda ◽  
Maria Dolors Balaguer ◽  
Jesús Colprim

2011 ◽  
Vol 378-379 ◽  
pp. 428-432
Author(s):  
Yu Qin ◽  
Jing Song Guo ◽  
Fang Fang

PCR-DGGE was applied to analyze the relationship between pH and the microbial community structure of Sequence Batch Biofilm Reactor (SBBR) autotrophic nitrogen removal process. The reactor was possessed of a high nitrogen removal efficiency at pH=8.0 where the similarity of microbial community structure between active sludge and biofilm samples was the lowest about 84.6% and the richness of bacterial community was the most abundant in biofilm compared with other pH conditions. pH=7.0 was good for the microbes in active sludge but unfavorable for anaerobic bacteria. At pH=9.0, the effects were presented with both bacterial activities and microbial community structure and when pH=6.0 the amount of microbial types dramatically dropped


2021 ◽  
Author(s):  
Chi Zhang ◽  
Lianze Yu ◽  
Miao Zhang ◽  
Jun Wu

Abstract The nitrate produced by the one-stage partial nitritation-anammox (PN/A) process can be removed through partial denitrification (PD) by adding carbon source. In this study, a 1D multi-population biofilm model was developed to evaluate the contribution of partial denitrification on the one-stage autotrophic nitrogen removal process at influent NH4+ = 100 mg N/L. The dynamic simulation that was carried out to investigate the effect of nitrite-oxidizing bacteria (NOB) revealed that PD contributed to the reactor to obtain total nitrogen removal efficiency (TNR) of above 90% and the effluent nitrate was significantly decreased with the absence of NOB. However, PD decreased TNR of the one-stage PN/A process with the presence of NOB. Increased influent chemical oxygen demand (COD) widened the dissolved oxygen (DO) range required for high TNR whether NOB were present or not. The steady-state simulation results showed that NOB were always absent in the granules at high DO and COD levels and the optimum DO > 0.5 mg/L when influent COD was over 50 mg/L. Besides, higher influent COD/NH4+ (C/N) and larger granule diameter (diameter > 1600 µm) were contributed to widening the range of DO required for high TNR. The nitrogen removal contribution of anammox bacteria (AMX) was significantly higher than denitrification in the reactor.


Chemosphere ◽  
2007 ◽  
Vol 69 (5) ◽  
pp. 776-784 ◽  
Author(s):  
Zheng Gong ◽  
Fenglin Yang ◽  
Sitong Liu ◽  
Han Bao ◽  
Shaowei Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document