scholarly journals Forecasting of UV-Vis absorbance time series using artificial neural networks combined with principal component analysis

2016 ◽  
Vol 75 (4) ◽  
pp. 765-774
Author(s):  
Leonardo Plazas-Nossa ◽  
Thomas Hofer ◽  
Günter Gruber ◽  
Andres Torres

This work proposes a methodology for the forecasting of online water quality data provided by UV-Vis spectrometry. Therefore, a combination of principal component analysis (PCA) to reduce the dimensionality of a data set and artificial neural networks (ANNs) for forecasting purposes was used. The results obtained were compared with those obtained by using discrete Fourier transform (DFT). The proposed methodology was applied to four absorbance time series data sets composed by a total number of 5705 UV-Vis spectra. Absolute percentage errors obtained by applying the proposed PCA/ANN methodology vary between 10% and 13% for all four study sites. In general terms, the results obtained were hardly generalizable, as they appeared to be highly dependent on specific dynamics of the water system; however, some trends can be outlined. PCA/ANN methodology gives better results than PCA/DFT forecasting procedure by using a specific spectra range for the following conditions: (i) for Salitre wastewater treatment plant (WWTP) (first hour) and Graz West R05 (first 18 min), from the last part of UV range to all visible range; (ii) for Gibraltar pumping station (first 6 min) for all UV-Vis absorbance spectra; and (iii) for San Fernando WWTP (first 24 min) for all of UV range to middle part of visible range.

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 989 ◽  
Author(s):  
Agus Budi Dharmawan ◽  
Gregor Scholz ◽  
Shinta Mariana ◽  
Philipp Hörmann ◽  
Igi Ardiyanto ◽  
...  

Cell registration by artificial neural networks (ANNs) in combination with principal component analysis (PCA) has been demonstrated for cell images acquired by light emitting diode (LED)-based compact holographic microscopy. In this approach, principal component analysis was used to find the feature values from cells and background, which would be subsequently employed as neural inputs into the artificial neural networks. Image datasets were acquired from multiple cell cultures using a lensless microscope, where the reference data was generated by a manually analyzed recording. To evaluate the developed automatic cell counter, the trained system was assessed on different data sets to detect immortalized mouse astrocytes, exhibiting a detection accuracy of ~81% compared with manual analysis. The results show that the feature values from principal component analysis and feature learning by artificial neural networks are able to provide an automatic approach on the cell detection and registration in lensless holographic imaging.


Sign in / Sign up

Export Citation Format

Share Document