scholarly journals Effects of hydraulic loading rate and aeration mode on nitrogen removal and nitrogen functional gene abundances in subsurface wastewater infiltration systems

2017 ◽  
Vol 76 (1) ◽  
pp. 210-218 ◽  
Author(s):  
Yafei Sun ◽  
Jing Pan ◽  
Shiyue Qi ◽  
Hexin Fei

Matrix dissolved oxygen, nitrogen removal and nitrogen functional gene abundances in two artificial aeration modes, continuous aeration (CA) and intermittent aeration (IA), in subsurface wastewater infiltration systems (SWISs) under different hydraulic loading rates (HLRs) were investigated. Aeration not only successfully created aerobic conditions at 50 cm depth, but also did not change anoxic or anaerobic conditions at 80 and 110 cm depths. Meanwhile, aeration significantly enhanced chemical oxygen demand, NH4+-N, and total nitrogen (TN) removal and the enrichment of nitrogen removal functional genes (amoA, nxrA, napA, narG, nirK and qnorB) compared to the non-aerated SWIS, especially for high HLRs. IA SWIS (79.7%–85.8%) had a better performance on TN removal compared with CA SWIS (73.8%–82.2%) when the HLRs ranged from 0.06 to 0.3 m3/(m2 d). Intermittent aeration is a sensible strategy to achieve high HLR, good nitrogen removal performance and comparatively low operation cost for SWISs.

2018 ◽  
Vol 78 (2) ◽  
pp. 329-338 ◽  
Author(s):  
Fanping Zheng ◽  
Yue Zhao ◽  
Zhiqi Li ◽  
Chaoquan Tan ◽  
Jing Pan ◽  
...  

Abstract This study investigated matrix oxidation–reduction potential (ORP), nitrogen removal, N2O emission and nitrogen removal functional gene abundance in three subsurface wastewater infiltration systems (SWISs), named SWIS A (without aeration or shunt distributing wastewater), SWIS B (with shunt distributing wastewater) and SWIS C (with intermittent aeration and shunt distributing wastewater) under different shunt ratios. Aerobic conditions were produced at a depth of 50 cm and anoxic or anaerobic conditions were not changed at depths of 80 and 110 cm by aeration in SWIS C. High average removal rates of chemical oxygen demand (COD) (83.1% for SWIS B, 90.9% for SWIS C), NH3-N (74.3% for SWIS B, 90.8% for SWIS C) and total nitrogen (TN) (61.1% for SWIS B, 87.9% for SWIS C) were obtained under shunt ratios of 1:3 and 1:2 for SWIS B and C, respectively. The lowest N2O emission rate (28.4 mg/(m2 d)) and highest nitrogen removal functional gene abundances were achieved in SWIS C under a 1:2 shunt ratio. The results suggested intermittent aeration and shunt distributing wastewater combined strategy would enhance nitrogen removal and reduce N2O emission for SWISs.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 179-186 ◽  
Author(s):  
S. Karnchanawong ◽  
C. Polprasert

Experiments on attached-growth circulating reactor (AGCR) were conducted to investigate its efficiencies on organic carbon and nitrogen removal (through denitrification). A laboratory-scale AGCR, made of serpentine channel with a total length of 180.0 m, was fed with a synthetic wastewater at the chemical oxygen demand (COD) and total nitrogen (TN) loading rates of 3.56-10.16 and 0.30 - 0.91 g/(m2.d), respectively. The reactor effluent was recycled back to the influent feeding point and the dissolved oxygen (DO) concentrations along the channel length were controlled by means of air diffusion. It was found that the COD loading rate of 5 g/(m2. d) corresponding to the TN loading rate of 0.54 g/(m2.d) gave the optimal COD and TN removal rates of 4.8 and 0.43 g/(m2.d), respectively. The overall AGCR performance was limited by the nitrification efficiency at the high TN loading rates. The biofilm accumulation and thickness were found to be relatively high in the first-half portion of the channel length where carbon oxidation and denitrification were predominant. The second-half portion where nitrification mainly occurred had much less biofilm accumulation and thickness.


2004 ◽  
Vol 48 (11-12) ◽  
pp. 355-361 ◽  
Author(s):  
B. Erol Nalbur ◽  
L. Akça ◽  
H. Bayhan

Within the context of this study, two lab-scale aquatic plant reactors consisting of duckweed (Lemna minor) ponds, were investigated for the removal of nitrogen forms during the secondary treatment of domestic wastewater. TKN, NH3-N and NO3-N parameters have been measured in both reactors for hydraulic retention times ranging from 3.3 days to 23 days and at various distances from the inlet of reactors. The results were evaluated for hydraulic retention times, hydraulic loading rates and mass loading rates. It was concluded that hydraulic and mass loading parameters were more meaningful than hydraulic retention time. Optimum nitrogen removal values of hydraulic loading rate and mass loading rate were found to be 1.2 cm/day and 90-160 mg TKN/m2-day, respectively. At the higher and lower loading rates, nitrogen removal efficiency was lower than those at optimum conditions. Effluent TKN concentration was around 2.5 to 3.0 mg/l while NH3-N concentration was almost zero at these loading conditions. On the other hand, effluent NO3-N concentrations changed between 7 mg/l to 11 mg/l. When investigating the longitudinal profile, values were reduced rapidly along the reactors. It was concluded that most of the nitrogen conversion occurred at the beginning of the reactor.


2007 ◽  
Vol 55 (11) ◽  
pp. 121-126 ◽  
Author(s):  
M. von Sperling ◽  
J.G.B. de Andrada ◽  
W.R. de Melo Júnior

A system comprising a UASB reactor, shallow polishing ponds and shallow coarse filters, treating actual wastewater from the city of Belo Horizonte, Brazil, has been evaluated. The main focus of the research was to compare grain sizes and hydraulic loading rates in the coarse filters. Two filters operating in parallel were investigated, with the following grain sizes: Filter 1: 3 to 10 cm; Filter 2: 8 to 20 cm. Two hydraulic loading rates were tested: 0.5 and 1.0 m3/m3.d. The filter with the lower rock size had a better performance than the filter with the larger rock size in the removal of SS and, as a consequence, BOD and COD. A better performance was obtained with the hydraulic loading rate of 0.5 m3/m3.d, as compared to the rate of 1.0 m3/m3.d. The effluent quality during the period with the lower loading rate was very good for discharge into water bodies or for agricultural reuse (median effluent concentrations from Filter 1: BOD: 20 mg/L; COD: 106 mg/L; SS: 28 mg/L; E. coli: 528 MPN/100 mL).


2019 ◽  
Vol 91 (5) ◽  
pp. 399-406
Author(s):  
Fanping Zheng ◽  
Linli Huang ◽  
Jing Pan ◽  
Shiyue Qi ◽  
Chaoquan Tan ◽  
...  

2012 ◽  
Vol 9 ◽  
pp. 57-62
Author(s):  
Fiza Sarwar ◽  
Wajeeha Malik ◽  
Muhammad Salman Ahmed ◽  
Harja Shahid

Abstract: This study was designed using actual effluent from the sugary mills in an Up-flow Anaerobic Sludge Blanket (UASB) Reactor to evaluate treatability performance. The reactor was started-up in step-wise loading rates beginning from 0.05kg carbon oxygen demand (COD)/m3-day to 3.50kg-COD/m3-day. The hydraulic retention time (HRT) was slowly decreased from 96 hrs to eight hrs. It was observed that the removal efficiency of COD of more than 73% can be easily achieved at an HRT of more than 16 hours corresponding to an average organic loading rate (OLR) of 3.0kg-COD/m3-day, at neutral pH and constant temperature of 29°C. The average VFAs (volatile fatty acids) and biogas production was observed as 560mg/L and 1.6L/g-CODrem-d, respectively. The average methane composition was estimated as 62%. The results of this study suggest that the treatment of sugar mills effluent with the anaerobic technology seems to be more reliable, effective and economical.DOI: http://dx.doi.org/10.3126/hn.v9i0.7075 Hydro Nepal Vol.9 July 2011 57-62


2019 ◽  
Vol 79 (7) ◽  
pp. 1417-1425 ◽  
Author(s):  
Yue Zhao ◽  
Zhiyu Zhang ◽  
Ziqi Li ◽  
Shiyao Wang ◽  
Chaoquan Tan ◽  
...  

Abstract The effect of intermittent aeration and an influent distributary on NH4+-N removal, total nitrogen (TN) removal, nitrous oxide (N2O) emission and the abundances of nitrogen removal and N2O emission functional genes in four types of ecological soil wastewater infiltration systems (ESWISs) (which were conventional ESWIS 1 (operated without aeration and influent distributary), ESWIS 2 (operated with intermittent aeration), ESWIS 3 (operated with influent distributary) and ESWIS 4 (operated with intermittent aeration and influent distributary)) were studied. Intermittent aeration in ESWIS 2 and 4 created aerobic conditions above 50 cm depth of the matrix and anoxic or anaerobic conditions in the lower matrix (below 80 cm depth). ESWIS 4 improved NH4+-N (to 90.1%) and TN (to 87.8%) removal efficiencies and increased the abundances of eight nitrogen removal and N2O emission functional genes (amoA, nxrA, narG, napA, nirS, nirK, qnorB and nosZ) in contrast with other ESWISs. The combination of intermittent aeration and influent distributary achieved the lowest N2O emission rate of 34.7 mg/(m2 d) in ESWIS 4. Intermittent aeration combined with influent distributary was recommended for ESWISs to enhance nitrogen removal and reduce N2O emission.


2016 ◽  
Vol 73 (11) ◽  
pp. 2662-2669 ◽  
Author(s):  
Siyu Song ◽  
Jing Pan ◽  
Shiwei Wu ◽  
Yijing Guo ◽  
Jingxiao Yu ◽  
...  

The matrix oxidation reduction potential level, organic pollutants and nitrogen removal performances of eight subsurface wastewater infiltration systems (SWISs) (four with intermittent aeration, four without intermittent aeration) fed with influent chemical oxygen demand (COD)/N ratio of 3, 6, 12 and 18 were investigated. Nitrification of non-aerated SWISs was poor due to oxygen deficiency while higher COD/N ratios further led to lower COD and nitrogen removal rate. Intermittent aeration achieved almost complete nitrification, which successfully created aerobic conditions in the depth of 50 cm and did not change anoxic or anaerobic conditions in the depth of 80 and 110 cm. The sufficient carbon source in high COD/N ratio influent greatly promoted denitrification in SWISs with intermittent aeration. High average removal rates of COD (95.68%), ammonia nitrogen (NH4+-N) (99.32%) and total nitrogen (TN) (89.65%) were obtained with influent COD/N ratio of 12 in aerated SWISs. The results suggest that intermittent aeration was a reliable option to achieve high nitrogen removal in SWISs, especially with high COD/N ratio wastewater.


Author(s):  
Anwar Ahmad ◽  
Rumana Ghufran ◽  
Zularisam Abd. Wahid

Palm oil Mill Effluent (POME) with concentrated butyrate was treated in a 4.5 l upflow anaerobic sludge blanket reactor (UASBR), run over a range of influent concentrations (16.5–46.0 g-COD l−1), chemical oxygen demand (COD) loading rates (1.5–11.5 g-CODl−1d−1) and 11–4 days hydraulic retention time (HRT) at 37 °C by maintaining pH between 6.5–7.5. The process consistently removed 97–99% of COD at loading rates up to 1.5–4.8 g-COD l−1d−1 by varying HRT (11–7.2 days). Butyrate is an important intermediate in the anaerobic degradation of organic matter. In sulphate-depleted environment, butyrate in POME (BOD/COD ratio of 0.5) is β-oxidised to acetate and hydrogen, by obligate proton reducers in syntrophic association with hydrogen utilizing methanogens. The conversion of acetate to methane appeared to be rate limiting step. Maximum biogas (20.17 ll−1d−1) and methane production (16.2 ll−1d−1) were obtained at COD loading rate of 4.80 gl−1d−1and HRT of 7.2 days. The biogas and methane production were higher in the presence of butyrate compared to control. The methane content of the biogas was in the range of 70–80% throughout the study while in control it was 60–65%. Finding of this study clearly indicates the successful treatment of POME with butyrate in UASBR. Santrauka Palmių aliejaus gamybinės nuotekos (POME) su koncentruotu butiratu buvo apdorotos 4,5 l talpos aukštyn tekančio aerobinio dumblo plokšteliniame reaktoriuje (UASBR). Nuotekos tekėjo įvairių koncentracijų (16,5–46,0 g – ChDS 1−1), cheminio deguonies suvartojimo (ChDS) normos (1,5–11,5 g – ChDS 1−1d.−1). Hidraulinio sulaikymo trukmė (HRT) nuo 11 iki 4 dienų, kai temperatūra 37 °C, pH palaikant 6,5–7,5. Vykstant procesui nuolat buvo pašalinama 97–99% ChD, kai tiekimo ir pakrovimo sparta 1,5–4,8 g – ChDS 1−1d.−1 kintant HRT(11–7,2 d.). Butiratas yra svarbus tarpininkas organinių medžiagų anaerobinio skilimo procese. Sulfatas iš aplinkos, butiratas iš POME (BDS/ChDS santykis 0,5) yra acetato ir vandenilio β oksidatoriai, priverčiantys protonų reducentus sintrofinės sąveikos su vandeniliu metu utilizuoti metanogenus. Acetato virtimas metanu pasirodė esąs greitį ribojantis veiksnys. Daugiausia biodujų (20,17 l 1−1 d.−1) ir metano (16,2 l 1−1 d.−1) susidarė tada, kai suvartojamo ChD tiekimo greitis buvo 4,80 g 1−1d.−1, o HRT – 7,2 dienos. Daugiau biodujų ir metano susidarė dalyvaujant butiratui, palyginti su kontroliniu pavyzdžiu. Biodujose metano kiekis tyrimo metu svyravo 70–80%, o kontroliniame buvo 60–65%. Šis tyrimas aiškiai parodė, kad POME su butiratu UASBreaktoriuje apdorojamas sėkmingai.


2014 ◽  
Vol 12 (4) ◽  
pp. 686-691 ◽  
Author(s):  
Julie Napotnik ◽  
Kristen Jellison

Biosand filters (BSFs) are increasingly designed using smaller and/or lighter casing material in an effort to reduce logistical requirements and implementation costs. The increased portability of a smaller, lighter design presents a potential negative consequence: the ability to move the installed/operational filter by the homeowner and potentially disturb the system. This study investigated the effects of moving and agitation on filter performance, using mature BSFs which had been in use for over nine months prior to the move. Data were analyzed for four replicate filters of three different filter types: the traditional concrete BSF and two plastic bucket (5-gal and 2-gal, respectively; 5-gal bucket = 18.9-L bucket, 2-gal bucket = 7.6-L bucket) BSFs. Filters were moved approximately 1 km and monitored for hydraulic loading rates (HLRs) and Escherichia coli removal for 8 weeks following the move. Moving the filters resulted in reduced HLRs, likely due to sand compaction, but E. coli removal remained high (log10 removal ≥2.8 for all sizes) and increased significantly as compared to data collected prior to the move. The resulting operational implications of moving BSFs are discussed.


Sign in / Sign up

Export Citation Format

Share Document