scholarly journals Long-term investigation of phosphorus removal by iron electrocoagulation in small-scale wastewater treatment plants

2018 ◽  
Vol 78 (6) ◽  
pp. 1304-1311 ◽  
Author(s):  
I. Mishima ◽  
M. Hama ◽  
Y. Tabata ◽  
J. Nakajima

Abstract Small-scale wastewater treatment plants (SWTPs), called Johkasou, are widely used as decentralized and individual wastewater treatment systems in sparsely populated areas in Japan. Even in SWTPs, nutrients should be removed to control eutrophication. An iron electrolysis method is effective to remove phosphorus chemically in SWTPs. However, it is necessary to determine the precise conditions under which phosphorus can be effectively and stably removed in full scale SWTPs for a long period. Therefore, long-term phosphorus removal from SWTPs was investigated and optimum operational conditions for phosphorus removal by iron electrolysis were analyzed in this study. Efficient phosphorus removal can be achieved for a long time by adjusting the amount of iron against the actual population equivalent. The change of the recirculation ratio had no negative effect on overall phosphorus removal. Phosphorus release to the bulk phase was prevented by the accumulated iron, which was supplied by iron electrolysis, resulting in stable phosphorus removal. The effect of environmental load reduction due to phosphorus removal by iron electrolysis was greater than the cost of power consumption for iron electrolysis.

2017 ◽  
Vol 76 (4) ◽  
pp. 920-927 ◽  
Author(s):  
I. Mishima ◽  
M. Hama ◽  
Y. Tabata ◽  
J. Nakajima

Small-scale wastewater treatment plants (SWTPs) are widely used as decentralized wastewater treatment systems in sparsely populated areas of Japan. Iron electrolysis, an electrocoagulation technology, is installed in these SWTPs for phosphorus removal. Phosphorus can be removed via the formation of an insoluble compound containing phosphate and iron, such as FePO4; however, it was necessary to determine the conditions under which phosphorus can be effectively and stably removed in actual SWTPs. According to previous studies using iron compounds, improved phosphorus removal was obtained by Ca addition. It is therefore thought that calcium addition may also be effective in improving the phosphorus removal during iron electrolysis in SWTPs. It is also important to determine the chemical state of iron to understand the phosphorus removal mechanism during iron electrolysis. In this study, laboratory-scale batch experiments with the iron electrolysis method were conducted to investigate the effect of phosphorus removal using treated wastewater from actual SWTPs without or with Ca addition. The results indicated that the addition of Ca improved the phosphorus removal performance. Furthermore, phosphorus removal was inhibited in the presence of high dissolved organic carbon (DOC). The X-ray absorption fine structure measurements of the produced particulates in the experiments showed no substantial change in the chemical state of iron without or with Ca addition. The statistical analyses revealed the range of improving or inhibiting effects on phosphorus removal due to the Ca and DOC. Thus, the results of this study provided useful information pertaining to the influence of coexisting substances on phosphorus removal and the chemical state of iron in the produced particulates.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 211-216
Author(s):  
Niels Skov Olesen

In some areas of Denmark nutrient removal is required even for very small wastewater plants, that is down to 500 pe (pe = person equivalents). The goal for the removal is 80% removal of nitrogen and 90% removal of phosphorus, or in terms of concentrations: 8 mg nitrogen/l and 1.2 mg phosphorus/l. The inlet concentrations are typically 40 mg N/l and 10 mg P/l. The paper presents the results from two such plants with a capacity of 800 pe. Phosphorus removal is made by simultaneous precipitation with ferrous sulphate. Nitrogen removal is carried out using the recirculation method. Both plants were originally rotor aerated oxidation ditches. They have been extended with a denitrification reactor and a recirculation pumping station. At present both plants have been in activity for about 3 years and with satisfactory results. Average concentrations of nitrogen (summer) and phosphorus is 7 mg/l and 0.9 mg/l respectively. Nitrogen removal seems to be a practical solution on these small plants. It is,though, sensitive to temperature and highly oxidized rain water. Phosphorus removal seems to be an easily run and relatively non-sensitive technique at least when using simultaneous precipitation.


1993 ◽  
Vol 28 (11-12) ◽  
pp. 257-261
Author(s):  
M. Truett Garrett ◽  
Zaki Ahmad ◽  
Shelly Young

The recent requirements by U.S.E.P.A. for dechlorination and biomonitoring have increased the importance of automatic control of effluent chlorination in wastewater treatment plants. Difficulties with the Ziegler-Nichols controller tuning procedure were reported at the Kyoto Workshop, 1990. Problems are caused by the noise of incomplete mixing, a long time constant, and the disturbances of changing flow and chlorine demand. The Astrom-Hagglund relay feedback procedure provides acceptable control while data is logged to determine the controller constants. Experiences in using the procedure in existing facilities (not redesigning the mixing point) and the quality of control are presented.


1993 ◽  
Vol 28 (10) ◽  
pp. 1-8 ◽  
Author(s):  
A. Gaber ◽  
M. Antill ◽  
W. Kimball ◽  
R. Abdel Wahab

The implementation of urban village wastewater treatment plants in developing countries has historically been primarily a function of appropriate technology choice and deciding which of the many needy communities should receive the available funding and priority attention. Usually this process is driven by an outside funding agency who views the planning, design, and construction steps as relatively insignificant milestones in the overall effort required to quickly better a community's sanitary drainage problems. With the exception of very small scale type sanitation projects which have relatively simple replication steps, the development emphasis tends to be on the final treatment plant product with little or no attention specifically focused on community participation and institutionalizing national and local policies and procedures needed for future locally sponsored facilities replication. In contrast to this, the Government of Egypt (GOE) enacted a fresh approach through a Local Development Program with the United States AID program. An overview is presented of the guiding principals of the program which produced the first 24 working wastewater systems including gravity sewers, sewage pumping stations and wastewater treatment plants which were designed and constructed by local entities in Egypt. The wastewater projects cover five different treatment technologies implemented in both delta and desert regions.


1986 ◽  
Vol 67 (2) ◽  
pp. 99-101
Author(s):  
V. Ya. Shustov ◽  
N. A. Afanasyeva ◽  
P. P. Kuznetsov ◽  
A. K. Myshkina

Chronic lymphatic leukemia is second only to acute leukemia in the frequency of infectious complications. In most cases, severe infectious complications are the cause of death in these patients. Modern chemotherapy makes it possible to preserve the ability to work and the life expectancy of patients for a long time. However, the negative effect of cytostatic drugs on the already altered immune system leads to an even greater suppression of immunity and an increase in the number of infectious complications. The search for new ways to combat infections has shown the advisability of long-term outpatient treatment with antibacterial drugs.


2019 ◽  
Vol 135 ◽  
pp. 01032
Author(s):  
Elena Nazimko ◽  
Sergei Malko ◽  
Anna Semenova ◽  
Vladimir Dorovskoy

The interaction of phases is at the basis of many technologies in different industries. Flotation method is used in wastewater treatment plants to capture and remove contaminants from wastewater. In this case, the interaction of air bubbles with particles of pollution with a hydrophobic surface. These interactions are very difficult to investigate because they are dynamic, subject to a large number of physical and chemical factors, and occur on a small scale. The processes mentioned above have traditionally been studied by laboratory experiments. These tests are tedious and time-consuming and show unsatisfactory accuracy. Analytical studies give idealized results. One of the most powerful alternatives for solving this problem is numerical modeling, which combines dynamics, accuracy and consideration of sophisticated details. This model is based on the discrete elements method. In this paper, a computer model for modeling the kinetics of the interaction of phases in wastewater treatment is considered.


2014 ◽  
Vol 69 (7) ◽  
pp. 1573-1580 ◽  
Author(s):  
L. Åmand ◽  
C. Laurell ◽  
K. Stark-Fujii ◽  
A. Thunberg ◽  
B. Carlsson

Three large wastewater treatment plants in Sweden participate in a project evaluating different types of ammonium feedback controllers in full-scale operation. The goal is to improve process monitoring, maintain effluent water quality and save energy. The paper presents the outcome of the long-term evaluation of controllers. Based on the experiences gained from the full-scale implementations, a discussion is provided about energy assessment for the purpose of comparing control strategies. The most important conclusions are the importance of long-term experiments and the difficulty of comparing energy consumption based on air flow rate measurements.


Sign in / Sign up

Export Citation Format

Share Document