scholarly journals An adaptive real-time grey-box model for advanced control and operations in WRRFs

Author(s):  
Cheng Yang ◽  
Peter Seiler ◽  
Evangelia Belia ◽  
Glen T. Daigger

Abstract Grey-box models, which combine the explanatory power of first-principle models with the ability to detect subtle patterns from data, are gaining increasing attention in wastewater sectors. Intuitive, simple structured but fit-for-purpose grey-box models that capture time-varying dynamics by adaptively estimating parameters are desired for process optimization and control. As an example, this study presents the identification of such a grey-box model structure and its further use by an Extended Kalman Filter (EKF), for the estimation of the nitrification capacity and ammonia concentrations of a typical Modified Ludzack-Ettinger (MLE) process. The EKF was implemented and evaluated in real time by interfacing Python with SUMO (Dynamita™), a widely used commercial process simulator. The EKF was able to accurately estimate the ammonia concentrations in multiple tanks when given only the concentration in one of them. Besides, the nitrification capacity of the system could be tracked in real time by the EKF, which provides intuitive information for facility managers and operators to monitor and operate the system. Finally, the realization of EKF is critical to the development of future advance control, for instance, model predictive control.

Algorithms ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 97
Author(s):  
Song Zheng ◽  
Chao Bi ◽  
Yilin Song

This paper presents a novel diagonal recurrent neural network hybrid controller based on the shared memory of real-time database structure. The controller uses Data Engine (DE) technology, through the establishment of a unified and standardized software architecture and real-time database in different control stations, effectively solves many problems caused by technical standard, communication protocol, and programming language in actual industrial application: the advanced control algorithm and control system co-debugging difficulties, algorithm implementation and update inefficiency, and high development and operation and maintenance costs effectively fill the current technical gap. More importantly, the control algorithm development uses a unified visual graphics configuration programming environment, effectively solving the problem of integrated control of heterogeneous devices; and has the advantages of intuitive configuration and transparent data processing process, reducing the difficulty of the advanced control algorithms debugging in engineering applications. In this paper, the application of a neural network hybrid controller based on DE in motor speed measurement and control system shows that the system has excellent control characteristics and anti-disturbance ability, and provides an integrated method for neural network control algorithm in a practical industrial control system, which is the major contribution of this article.


AIChE Journal ◽  
2014 ◽  
Vol 60 (7) ◽  
pp. 2546-2556 ◽  
Author(s):  
Milana Trifkovic ◽  
W. Alex Marvin ◽  
Prodromos Daoutidis ◽  
Mehdi Sheikhzadeh

Sign in / Sign up

Export Citation Format

Share Document