MODELING AND PREDICTION OF FLEXURAL STRENGTH OF HYBRID MESH AND FIBER REINFORCED CEMENT-BASED COMPOSITES USING ARTIFICIAL NEURAL NETWORK (ANN)

Author(s):  
P.B. Sakthivel,
2021 ◽  
pp. 152808372110648
Author(s):  
Arpitha Gulihonenahali Rajkumar ◽  
Mohit Hemath ◽  
Bharath Kurki Nagaraja ◽  
Shivakumar Neerakallu ◽  
Senthil Muthu Kumar Thiagamani ◽  
...  

Plant fiber reinforced hybrid polymer composites have had broad applications recently because of their lower cost advantages, lower weight, and biodegradable nature. The present work studies the influence of reinforcing giant reed fiber concentration in polyethylene terephthalate (PET) polymer for their physical, mechanical, and thermal characteristics and determines the optimum loading of giant reed fiber using an artificial neural network (ANN) scheme. Giant reed fiber reinforced PET matrix laminates were manufactured from compression molding with different fiber loadings such as 5 wt.%, 10 wt.%, and 20 wt.%. The mechanical characteristics such as tensile and flexural strength and the laminate’s tensile and flexural modulus were appraised and examined. The maximum value of tensile strength, flexural strength, tensile modulus, and flexural modulus were 5.4 MPa, 26 MPa, 8343 MPa, and 6300 MPa, respectively, for PET2 (10 wt.% of giant reed fiber in PET polymer) composite. Fiber pullout, gaps, and fracture behavior were examined from a scanning electron microscope in the microstructural analysis. A machine learning technique has been recommended to combine artificial intelligence while designing giant reed fiber reinforced polymeric laminates. Using the suggested method, an ANN model has been generated to attain the targeted giant reed fiber concentration for PET composite while gratifying the necessary targeted characteristics. The developed method is very effective and decreases the effort and time of material characterization for huge specimens. It will support the researchers in designing their forthcoming test efficiently.


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Sign in / Sign up

Export Citation Format

Share Document