DETERMINING PEAK DISCHARGE FACTOR USING SYNTHETIC UNIT HYDROGRAPH MODELLING (CASE STUDY: UPPER KOMERING SOUTH SUMATERA, INDONESIA)

2017 ◽  
Vol 13 (36) ◽  
Author(s):  
Rosmalinda Permatasari
2021 ◽  
Vol 13 (1) ◽  
pp. 17-24
Author(s):  
Muhamad Syahroni

Flooding is a natural disaster caused by the discharge or volume of water that flows in a river exceeds its stream capacity. One of the causes of the flood is high rainfall. The discharge of a river flow depends on the rainfall that falls in a watershed. The purpose of this study was to determine the peak discharge due to the intensity of rainfall in the downstream of Air Manna Watershed and determine the point that will undergo runoff on the Air Manna river flow. This study used Synthetic Unit Hydrograph (HSS) ITB 1 method and analyzed used HEC-RAS 5.0.7. From the result of hydrological analysis used the HSS ITB 1 method, it was found out the peak discharge in the downstream of Air Manna Watershed for return periods 2, 5, 10, 25, 50 and 100 years was 1322.21 m3/s, 1492.94 m3 /s, 1594 12 m3 /s, 1712.20 m3/s, 1794.33 m3 /s, and 1872.85 m3/s. After analyzing used HEC-RAS 5.0.7 software, Air Manna river was unable to accommodate the flow rate that occurred and undergo runoff along the flow.


2021 ◽  
Vol 331 ◽  
pp. 07015
Author(s):  
Dian Pratiwi ◽  
Arniza Fitri ◽  
Arlina Phelia ◽  
Nabila Annisa Amara Adma ◽  
Kastamto

In the urban area, flooding becomes the most common disaster that has not been resolved until today. The utilization of river border area into housing and lack of absorption area becomes the trigger factor of urban flooding, as what is happening around Way Halim River on Seroja street. In this area, floods often happen during the rainy season, with the latest events recorded on January 21st, 2021. Analysis of flood intensities and discharges can be parameters for the decision-making of flood mitigation strategies. This study aims to analyze the flood discharges along Way Halim River, Seroja street by comparing the flood discharges resulting from three analysis methods of Synthetic Unit Hydrograph (SUH) including Gama I SUH, Nakayasu SUH, and Snyder SUH. Finally, suitable flood mitigation strategies were also proposed in this study based on the flood discharges and rain intensities. The results showed that Nakayasu SUH had the highest peak flood discharge than Snyder SUH and Gama I SUH. Based on the results of the investigation of land suitability; and analysis of rainfall intensities and flood discharges, the proposed flood mitigation in Seroja street is by installing biopore infiltration holes along Seroja street for storing water and reducing the risk of flooding in the area.


2015 ◽  
Author(s):  
Muhammad Islahuddin ◽  
Adiska L. A. Sukrainingtyas ◽  
M. Syahril B. Kusuma ◽  
Edy Soewono

2020 ◽  
Vol 12 (2) ◽  
pp. 83-90
Author(s):  
Agam Sanjaya

ANALISIS DEBIT PUNCAK SUNGAI LUBUK BANYAU KABUPATEN BENGKULU UTARA DENGAN MENGGUNAKANMETODE HIDROGRAF SATUAN SINTETIK Agam Sanjaya I1), Khairul Amri II2), Muhammad Fauzi III3) 1) 2) 3)Jurusan Teknik Sipil, Fakultas Teknik UNIB Jl. W.R. Supratman, Kandang Limun, Kota Bengkulu 38371, Telp. (0736)344087e-mail: [email protected], [email protected] , [email protected] aliran sungai (DAS) Sungai Lubuk banyau merupakan salah satu DAS yang berada di Bengkulu Utara. DAS Sungai Lubuk banyau mengalir dari daerah hulu yang terletak diwilayah Kabupaten Bengkulu utara. Tujuan dari penelitian ini adalah menganalisa debit puncak rencana akibat intensitas curah hujan pada DAS Lubuk Banyau dalam menganalisis hidrologi dengan menggunakan metode Hidograf Satuan Sintetik (HSS) Gama I, HSS Nakayasu dan HSS Snyder. Berdasarkan hasil perhitungan dari penelitian ini distribusi frekuensi terhadap tiga metode curah hujan, yaitu metode ditribusi Gumbel Tipe I, Log Pearson Tipe III dan Log Normal maka metode yang digunakan untuk perhitungan curah hujan rencana pada penelitian ini adalah Metode Gumbel Tipe I dengan periode ulang 2, 5, 10, 25, 50 dan 100 tahun, yaitu 181,164 mm, 275,356 mm, 337,709 mm, 416,518 mm, 474,974 mm dan 532,998 mm. Dari hasil analisis hidrologi pada penelitian diperoleh debit puncak pada DAS Lubuk Banyau untuk periode ulang 100 tahun dengan metode HSS Snyder adalah 1531,111 m3/detik dengan waktu puncak sebesar 5 jam merupakan debit puncak yang paling besar diantara HSS Gama I dan Nakayasu. untuk hasil debit puncak dengan metode HSS Gama I adalah 776,91m3/detik dengan waktu puncak sebesar 4 jam dan HSS Nakayasu 1023,87 dengan waktu puncak 2,46 jam. Maka didapatkan tinggi permukaan air pada DAS Lubuk Banyau yaitu 1,134 m.Kata kunci: hidrograf satuan sintetik, debit puncak, gama I, nakayasu, dan snyderAbstractWatershed Lubuk Banyau is one of the watersheds in North Bengkulu. The Lubuk River watershed flows from the upstream area located in the northern Bengkulu regency. The purpose of this study is to analyze the planned peak discharge due to rainfall intensity in the Lubuk Banyau watershed in analyzing hydrology using the Synthetic Unit Hydrograph (HSS) method of Gama I, HSS Nakayasu and HSS Snyder. Based on the results of calculations from this study the frequency distribution of three rainfall methods, namely the Gumbel Type I distribution method, Pearson Type III Log and Normal Log, the method used for calculating the planned rainfall in this study is the Gumbel Type I method with a return period of 2, 5, 10, 25, 50 and 100 years, namely 181,164 mm, 275,356 mm, 337,709 mm, 416,518 mm, 474,974 mm and 532,998 mm. From the results of the hydrological analysis in the study, the peak discharge in the Lubuk Banyau watershed for a 100-year return period with the Snyder HSS method was 1531,111 m3 / second with a peak time of 5 hours being the largest peak discharge between Gama I and Nakayasu HSS. for the peak discharge using the HSS Gama I method is 776.91m3 / sec with a peak time of 4 hours and Nakayasu HSS of 1023.87 with a peak time of 2.46 hours. Then the water level obtained at the Lubuk Banyau watershed is 1,134 m.Keywords: synthetic unit hydrograph, peak discharge gama I, nakayasu, and snyder.


2018 ◽  
Vol 6 (1) ◽  
pp. 29-44
Author(s):  
Gustama Gustama ◽  
Fadillah Sabri ◽  
Donny Fransiskus Manalu

A widely used method for analyzing river flow for flood forecasts is hydrograph unit. The hydrograph unit is a direct runoff hydrograph that can be created when there are AWLR record data, debit measurements and rainfall data. Synthetic Unit Hydrograph (SUH) is a unit hydrograph derived based on river data in the same watershed or nearby watershed but has the same characteristics, ie HSS Gama I, HSS Nakayasu, Limasan HSS, HSS Snyder and HSS SCS. Of the two hydrographs, there will be suitability of the hydrograph form that is going to be made. Sub territory of Pedindang  River Basin has four flood incidents, namely, date 23-24 February 2016; March 2-3, 2016; March 3-4, 2016; and date 5-6 March 2016. In the analysis of each flood event, the peak discharge of synthetic unit hydrograph is very different from the peak discharge of the measured unit hydrograph. The average peak discharge of synthetic unit hydrograph occurs in the range of 2 or 3 hours, while the measured unit hydrograph of Pedindang River occurs in the range of 7 or 8 hours. In four flood events it is stated that, HSS Gama I approaches RMSE value (validation <10%) to HST form of Pedindang River with value: RMSE incidence I (23,601%); RMSE incidence II (16.315%); RMSE incidence III (50,400%); RMSE incidence IV (22.322%). With this result, it is stated that there is no synthetic unit hydrograph model that has compatibility with the measured unit hydrograph of Pedindang River.


2020 ◽  
Vol 3 (2) ◽  
pp. 115-128
Author(s):  
Asta Asta ◽  
Nurjaya Nurjaya

The Kayan Watershed in Bulungan Regency is the largest river in North Kalimantan which has the potential for flooding in several irrigated points. Kayan River is a flood-prone area and prioritized to be handled immediately because there is already a smooth life for the community. Potentially need to know the great potential of flooding in the Kayan River. To find out the relationship between flood discharge and flood time, the Synthetic Unit Hydrograph calculation method is used. The aim is to determine the shape and results of peak discharge in Synthetic Unit Hydrograph Y (SUH). This study uses a debit calculation in the Kayan watershed using Snyder HSS a nd Nakayasu HSS. From the calculation results obtained Snyder SUH peak discharge of 118.0 m3/ sec at 73.85 hours, and Nakayasu SUH has a peak discharge of 109.35 m3 / sec at 54.09 hours.


Author(s):  
A. Kahffi ◽  
S. Lipu

The Poso River is a river located in Poso Regency, Central Sulawesi Province, which has a length of 74.58 km, and watershed area of 1092.810 km2. Energy in the Poso River is used for hydroelectric power plant (PLTA). With the construction of the Poso hydropower plant, maximum flood discharge data is needed for the prevention of Poso hydro power plant safety. In calculating the flood discharge, the method used is a synthetic unit hydrograph. Synthetic unit hydrograph is a graph of the relationship between flow rate (Q) and time (t). In this study, the method used to calculate the designed flood discharge is the Snyder synthetic unit hydrograph method and the Soil Conversation Service (SCS) synthetic unit hydrograph. The aims of this study are to determine the largest flood discharge value and to determine the hydrograph shapes of the two methods. The parameters that will be obtained from both methods are peak time (Tp), base time (Tb) and peak discharge (Qp). From the analysis it can be found that in the Snyder SUH method, the peak time (Tp) is 12.616 hours, the base time (Tb) is 67.276 hours with a peak discharge (Qp) of 21.672 m3sec. Whereas in the SCS SUH method, the peak time (Tp) is 10.954 hours, the base time (Tb) is 57.268 hours with a peak discharge (Qp) of 20.751 m3/sec. The result demonstrates the result that the largest flood discharge has occurred in the Snyder SUH method.


Sign in / Sign up

Export Citation Format

Share Document