scholarly journals Symplectic structure of isospin particles in Yang-Mills fields

1992 ◽  
Author(s):  
P. Oh
Pramana ◽  
2006 ◽  
Vol 67 (6) ◽  
pp. 1043-1053 ◽  
Author(s):  
U Camci ◽  
Z Can ◽  
Y Nutku ◽  
Y Sucu ◽  
D Yazici

1997 ◽  
Vol 09 (01) ◽  
pp. 77-121 ◽  
Author(s):  
Ambar Sengupta

Yang–Mills connections over closed oriented surfaces of genus ≥1, for compact connected gauge groups, are constructed explicitly. The resulting formulas for Yang–Mills connections are used to carry out a Marsden–Weinstein type procedure. An explicit formula is obtained for the resulting 2-form on the moduli space. It is shown that this 2-form provides a symplectic structure on appropriate subsets of the moduli space.


1992 ◽  
Vol 07 (21) ◽  
pp. 1923-1930 ◽  
Author(s):  
PHILLIAL OH

Using Dirac’s constraint analysis, we explore the Hamiltonian formalism of isospin particles in external Yang-Mills fields without kinetic and potential energy term. We consider an example of isospin particle in ’t Hooft-Polyakov magnetic monopole field and discuss possible quantization condition of magnetic charge in terms of geometric quantization.


2004 ◽  
Vol 01 (04) ◽  
pp. 289-298 ◽  
Author(s):  
AMBAR N. SENGUPTA

An account of the Lagrangian and Hamiltonian dynamics of the pure Yang–Mills system is presented. This framework is applied to the case of (1+1)-dimensional cylindrical spacetime. Hamiltonian dynamics on the space of connections over a circle is often identified with dynamics on the cotangent bundle of the gauge group by means of the holonomy. In support of this procedure we show that the symplectic structure for Hamiltonian dynamics for connections on a circle is identifiable with the natural symplectic structure on the cotangent bundle of the gauge group.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Miguel Campiglia ◽  
Javier Peraza

Abstract Asymptotic symmetries of gauge theories are known to encode infrared properties of radiative fields. In the context of tree-level Yang-Mills theory, the leading soft behavior of gluons is captured by large gauge symmetries with parameters that are O(1) in the large r expansion towards null infinity. This relation can be extended to subleading order provided one allows for large gauge symmetries with O(r) gauge parameters. The latter, however, violate standard asymptotic field fall-offs and thus their interpretation has remained incomplete. We improve on this situation by presenting a relaxation of the standard asymptotic field behavior that is compatible with O(r) gauge symmetries at linearized level. We show the extended space admits a symplectic structure on which O(1) and O(r) charges are well defined and such that their Poisson brackets reproduce the corresponding symmetry algebra.


1989 ◽  
Vol 39 (4) ◽  
pp. 1210-1212 ◽  
Author(s):  
Wei Chen ◽  
Weiliang Shen ◽  
Yue Yu

2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Aldo Riello

I develop a theory of symplectic reduction that applies to bounded regions in electromagnetism and Yang--Mills theories. In this theory gauge-covariant superselection sectors for the electric flux through the boundary of the region play a central role: within such sectors, there exists a natural, canonically defined, symplectic structure for the reduced Yang--Mills theory. This symplectic structure does not require the inclusion of any new degrees of freedom. In the non-Abelian case, it also supports a family of Hamiltonian vector fields, which I call ``flux rotations,'' generated by smeared, Poisson-non-commutative, electric fluxes. Since the action of flux rotations affects the total energy of the system, I argue that flux rotations fail to be dynamical symmetries of Yang--Mills theory restricted to a region. I also consider the possibility of defining a symplectic structure on the union of all superselection sectors. This in turn requires including additional boundary degrees of freedom aka ``edge modes.'' However, I argue that a commonly used phase space extension by edge modes is inherently ambiguous and gauge-breaking.


Sign in / Sign up

Export Citation Format

Share Document