scholarly journals Determination of the Proton's Weak Charge via Parity Violating Electron Scattering

2015 ◽  
Author(s):  
Joshua Russell Hoskins
Author(s):  
P. E. Batson ◽  
C. H. Chen ◽  
J. Silcox

We wish to report in this paper measurements of the inelastic scattering component due to the collective excitations (plasmons) and single particlehole excitations of the valence electrons in Al. Such scattering contributes to the diffuse electronic scattering seen in electron diffraction patterns and has recently been considered of significance in weak-beam images (see Gai and Howie) . A major problem in the determination of such scattering is the proper correction for multiple scattering. We outline here a procedure which we believe suitably deals with such problems and report the observed single scattering spectrum.In principle, one can use the procedure of Misell and Jones—suitably generalized to three dimensions (qx, qy and #x2206;E)--to derive single scattering profiles. However, such a computation becomes prohibitively large if applied in a brute force fashion since the quasi-elastic scattering (and associated multiple electronic scattering) extends to much larger angles than the multiple electronic scattering on its own.


2008 ◽  
Vol 1122 ◽  
Author(s):  
Gregory R. Lumpkin ◽  
Karl R. Whittle ◽  
Mark G. Blackford ◽  
Katherine L. Smith ◽  
Nestor J. Zaluzec

AbstractSelected area electron diffraction patterns are routinely used to determine the effects of irradiation damage in nuclear materials. Using zone axis orientations, the intensities of Bragg beams change from a dynamical to kinematic-like state due to the presence of amorphous domains in the material. Such changes in beam intensities, together with the increased diffuse scattering from the increasing amorphous fraction, present a major obstacle to the determination of cation or anion disorder in the crystalline fraction.


2019 ◽  
Vol 69 (1) ◽  
pp. 191-217 ◽  
Author(s):  
Roger D. Carlini ◽  
Willem T.H. van Oers ◽  
Mark L. Pitt ◽  
Gregory R. Smith

This article discusses some of the history of parity-violation experiments that culminated in the Qweak experiment, which provided the first determination of the proton's weak charge [Formula: see text]. The guiding principles necessary to the success of that experiment are outlined, followed by a brief description of the Qweak experiment. Several consistent methods used to determine [Formula: see text] from the asymmetry measured in the Qweak experiment are explained in detail. The weak mixing angle sin2θw determined from [Formula: see text] is compared with results from other experiments. A description of the procedure for using the [Formula: see text] result on the proton to set TeV-scale limits for new parity-violating semileptonic physics beyond the Standard Model (BSM) is presented. By also considering atomic parity-violation results on cesium, the article shows how this result can be generalized to set limits on BSM physics, which couples to any combination of valence quark flavors. Finally, the discovery space available to future weak-charge measurements is explored.


2020 ◽  
Vol 102 (3) ◽  
Author(s):  
J. M. Alarcón ◽  
D. W. Higinbotham ◽  
C. Weiss

A considerable amount of work, both theoretical and experimental, in the domain of electron scattering in gases has been carried out in recent years, and a comprehensive and most useful treatise has recently been written by Mott and Massey on this subject. Theory and experiment are in general relative agreement, it appears, at scattering angles greater than 10° and over wide ranges of electron energy, but so far attention has not been directed to the phenomena at angles much less than 10°—nor has an absolute determination of the probability of any type of collision been made experimentally. The present work is an attempt to obtain results in these directions.


Sign in / Sign up

Export Citation Format

Share Document