scholarly journals IN-SITU METHOD DEVELOPMENT TO IDENTIFY RADIOLOGICAL CONTAMINATION IN SOILS

2018 ◽  
Author(s):  
T. Whiteside ◽  
K. Fenker ◽  
T. Aucott ◽  
A. Brand
2015 ◽  
Vol 12 (12) ◽  
pp. 9443-9463
Author(s):  
J. M. Bernhard ◽  
W. G. Phalen ◽  
A. McIntyre-Wressnig ◽  
F. Mezzo ◽  
J. C. Wit ◽  
...  

Abstract. Insights into oceanographic environmental conditions such as paleoproductivity, sea-surface temperatures, deep-water temperatures, salinity, ice volumes, circulation patterns, and nutrient cycling have all been obtained from geochemical analyses of biomineralized carbonate of marine organisms. However, we cannot fully understand geochemical proxy incorporation and the fidelity of such in species until we better understand fundamental aspects of their ecology such as where and when these (micro)organisms calcify. Here, we present an innovative method using osmotic pumps and the fluorescent marker calcein to help identify where and when calcareous meiofauna calcify in situ. Method development initially involved juvenile quahogs (Mercenaria mercenaria); subsequent method refinement involved a neritic benthic foraminiferal community. Future applications of this method will allow determinations of in situ growth rate in calcareous organisms and provide insights about microhabitats where paleoceanographically relevant benthic foraminifera actually calcify.


2015 ◽  
Vol 12 (18) ◽  
pp. 5515-5522 ◽  
Author(s):  
J. M. Bernhard ◽  
W. G. Phalen ◽  
A. McIntyre-Wressnig ◽  
F. Mezzo ◽  
J. C. Wit ◽  
...  

Abstract. Insights into oceanographic environmental conditions such as paleoproductivity, deep-water temperatures, salinity, ice volumes, and nutrient cycling have all been obtained from geochemical analyses of biomineralized carbonate of marine organisms. However, we cannot fully understand geochemical proxy incorporation and the fidelity of such in species until we better understand fundamental aspects of their ecology such as where and when these (micro)organisms calcify. Here, we present an innovative method using osmotic pumps and the fluorescent marker calcein to help identify where and when calcareous meiofauna calcify in situ. Method development initially involved juvenile quahogs (Mercenaria mercenaria); subsequent method refinement involved a neritic benthic foraminiferal community. Future applications of this method will allow determining the in situ growth rate in calcareous organisms and provide insights about microhabitats where paleoceanographically relevant benthic foraminifera actually calcify.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1428
Author(s):  
Agnieszka Pluta-Kubica ◽  
Ewelina Jamróz ◽  
Gohar Khachatryan ◽  
Adam Florkiewicz ◽  
Pavel Kopel

There is a serious need to develop and test new biodegradable packaging which could at least partially replace petroleum-based materials. Therefore, the objective of this work was to examine the influence of the recently developed furcellaran nanocomposite film with silver nanoparticles (obtained by an in situ method) on the quality properties of two cheese varieties: a rennet-curd (gouda) and an acid-curd (quark) cheese. The water content, physicochemical properties, microbiological and organoleptic quality of cheese, and migration of silver nanoparticles were examined. Both the number of Lactococcus and total bacteria count did not differ during storage of gouda regardless of the packaging applied. The number of Lactococcus decreased in analogous quark samples. The use of the film slowed down and inhibited the growth of yeast in gouda and quark, respectively. An inhibitory effect of this film on mold count was also observed; however, only regarding gouda. The level of silver migration was found to be lower in quark than in gouda. The film improved the microbiological quality of cheeses during storage. Consequently, it is worth continuing research for the improvement of this film in order to enable its use in everyday life.


2021 ◽  
Vol 9 (4) ◽  
pp. 105560
Author(s):  
Krishnan Divakaran ◽  
Amanulla Baishnisha ◽  
Vellaichamy Balakumar ◽  
Krishnan Nattamai Perumal ◽  
Chandran Meenakshi ◽  
...  

2002 ◽  
Vol 124 (4) ◽  
pp. 269-275
Author(s):  
Paolo Macini ◽  
Ezio Mesini

Radioactive Marker Technique (RMT), an in-situ method to measure reservoir rock compaction and to evaluate uniaxial compressibility coefficients Cm, is examined here. Recent field applications seems to confirm that RMT-derived Cm’s match with sufficient precision with those calculated from land subsidence observed over the field by means of geodetic surveys, but are not always in good agreement with those derived from lab measurements. In particular, here is reported an application of RMT in the Italian Adriatic offshore, which highlights the discrepancies of Cm’s measurements from lab and RMT. At present, these discrepancies aren’t thoroughly understood, so, from an applicative standpoint, it is still necessary to perform a critical comparison and integration between both set of data.


Sign in / Sign up

Export Citation Format

Share Document