Dynamics of x-pinches Powered by a Capacitor Bank

2018 ◽  
Author(s):  
Richard Kingsley Appartaim
Keyword(s):  
2020 ◽  
Vol 6 ◽  
pp. 243-259
Author(s):  
Senthil Krishnamurthy ◽  
Ryan Jones ◽  
Manduleli Alfred Mquqwana

Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 453 ◽  
Author(s):  
Wang ◽  
Wang

Bipolar plates are a major part of fuel cells, which are a clean and recyclable energy source. This study was carried out with two dies for a bipolar plate forming investigation with the magnetic pulse method: a bipolar plate die and a 10-channel die. With the bipolar plate die, the forming of bipolar plates with a Cu110 sheet and a Grade 2 Ti sheet indicated that the bipolar plate die needed optimization for a full replication. The obtained maximum average depth percentage was 86% for a Cu110 sheet, while it was 54% for a Grade 2 Ti sheet in this study. A further increase of the depth percentage is possible but requires a much higher capacitor bank energy. The increase of the capacitor bank energy would result in severe tearing, while the depth percentage increase was little. The primary current and flyer velocity were measured at various capacitor bank energies. With the 10-channel die, the die parameters’ effect on metal sheet forming was investigated with a Cu110 sheet and an SS201 sheet. The draft angle had a significant effect on the replication of the die surface. The full replication was achieved for channels with proper parameters with both a Cu110 sheet and an SS201 sheet. Therefore, the bipolar plate die could be optimized based on the 10-channel die results.


Sign in / Sign up

Export Citation Format

Share Document