scholarly journals Analysis of the Long-Term Creep-Fatigue Behavior of 2 1/4 Cr-1 Mo Steel

1979 ◽  
Author(s):  
M. K. Booker
Author(s):  
B. Barua ◽  
V.-T. Phan ◽  
M. C. Messner ◽  
B. Jetter ◽  
T.-L. Sham ◽  
...  

Abstract The existing Class A metallic materials qualified for ASME Section III, Division 5 rules for high temperature nuclear reactors, are not optimized for corrosion resistance when exposed to corrosive reactor coolants such as molten salts, and molten lead and lead-bismuth eutectic. Introducing new corrosion-resistant materials into the Code would be a lengthy and expensive process for long design lifetimes, requiring long-term creep test data. A near-term alternative solution might be to allow designers to clad the existing Class A materials with thin layer of some corrosion-resistant material. However, the current ASME Section III, Division 5 rules provide no guidance on evaluating cladded components against the Code creep-fatigue or strain limits requirements. This necessitates the development of design rules for cladded components that do not require long-term testing of clad materials. Depending on the difference in mechanical properties, the influence of clad on the long term response of the structural system can be significant or negligible. This work focuses on developing design rules for cladded components with a clad material that does not accumulate significant inelastic deformation compared to the base material. This work proposes to treat such clad materials as linear elastic. Sample calculations including finite element analyses of a representative molten salt reactor heat exchanger tube without and with clad were performed to verify the proposed approach. Finally, a complete set of design rules for components with noncompliant clad material is proposed.


Author(s):  
Nazrul Islam ◽  
David J. Dewees ◽  
Tasnim Hassan

A continuum damage mechanics (CDM) coupled unified viscoplasticity model has been developed to predict the creep-fatigue life of modified Grade 91 steel. A tertiary creep model termed MPC-Omega codified in Part 10 of API (and also implemented in the ASME BP&V Code for Grade 22V and more recently Grade 91 Steel) is also employed for creep damage evaluation. As MPC-Omega has a direct relationship with Larson-Miller parameter (LMP) coefficients, creep damage coefficients in the unified constitutive model (UCM) are tied with MPC-Omega coefficients in order to utilize WRC and API 579-1 Grade 91 creep rupture database. The model is validated against long-term creep, LCF, creep-fatigue and TMF experimental responses at T = 20–600°C.


Sign in / Sign up

Export Citation Format

Share Document