scholarly journals Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion

1996 ◽  
Author(s):  
R.S. Dyer ◽  
J.M. Diamante ◽  
R.B. Duffey
Author(s):  
Juan Zhao

Radioactive wastes are produced within the nuclear fuel cycle operations (uranium conversion and enrichment, fuel fabrication and spent fuel reprocessing). Evaporation is a proven method for the treatment of liquid radioactive waste providing both good decontamination and high concentration. Two technical designs of nuclear facilities for low-level liquid radioactive waste treatment are presented in the paper and the evaluation of both methods, as well. One method is two-stage evaporation, widely used in the People’s Republic of China’s nuclear facilities; another is two evaporator units and subsequently ion exchange, which is based on the experience gained from TIANWAN nuclear power plant. Primary evaporation and ion exchange ensure the treated waste water discharged to environment by controlling the condensate radioactivity, and secondary evaporation is to control concentrates in a limited salt concentration.


1999 ◽  
Vol 49 (S1) ◽  
pp. 979-985 ◽  
Author(s):  
A. G. Chmielewski ◽  
M. Harasimowicz ◽  
G. Zakrzewska-Trznadel

1988 ◽  
Vol 64 (3) ◽  
pp. 249-254
Author(s):  
B. V. Martynov ◽  
A. E. Baklanov ◽  
N. P. Trushkov ◽  
A. V. Sibirev ◽  
A. P. Darienko

Author(s):  
Hitoshi Mimura ◽  
Shunsuke Susa ◽  
Yoshiyuki Ito ◽  
Yasuo Saito ◽  
Minoru Matsukura

Radioactive waste treatment is planned in LWTF (Low-level radioactive Waste Treatment Facility, JAEA) for LLW generated from the Tokai-reprocessing facility. The target LLW consists of highly concentrated sodium nitrate (5 M NaNO3) containing low-level 90Sr. In this study, selective adsorption properties of Sr2+ for highly functional A type zeolites (A51-JHP, A51-J (Union Showa) and A-4, X type zeolite (F-9) and Titanic acid-PAN (polyacrylamide) were clarified by batch and column adsorption methods. The irradiation stabilities of these adsorbents were also evaluated. The distribution properties of Sr2+ on different adsorbents were compared in simulated waste solution (5 M NaNO3, 0.1 ppm Sr2+, 85Sr as tracer). The order of distribution coefficients (Kd,Sr) was Titanic acid-PAN > A51-JHP > A51-J > A-4 > F-9. The largest value of Kd,Sr for titanic acid-PAN was estimated to be 218 cm3/g, while the saturated capacity (Qmax) was very small. Titanic acid-PAN had also the largest uptake rate of Sr2+ ions and the uptake attained equilibrium within 8 h. On the other hand, A51-JHP had a relatively large Kd,Sr value above 100 cm3/g and a Qmax value of 0.65 mmol/g. The breakthrough properties of Sr2+ were examined by varying cations present (single and mixed solutions) and flow rate (0.08 and 0.17 cm3/min). The components for the single solution were 400 g/L NaNO3, 100 ppm Sr2+, 85Sr as tracer, and the mixed solution contains 200 ppm Cs+, 100 ppm Ca2+, 50 ppm Mg2+, 50 ppm RuNO3+ in addition to the single solution components. The breakthrough curve for Titanic acid-PAN column using single solution had an S-shaped profile, while the “concentration phenomenon” exceeding C/C0 (breakthrough ratio) = 1 was observed in the case of mixed solution. As for the A51-JHP column, the breakthrough curve for single solution was similar to that for mixed solution and the 5% breakpoint was enhanced by decreasing the flow rate. The A51-JHP was stable under 60Co-irradiation up to 2.54 MGy; Kd,Sr and Qmax values were almost constant. In contrast, Titanic acid-PAN was affected above 0.28 MGy, due to the radiolysis of PAN matrix, and this surface alteration led to the release of active component of titanic acid. The novel A type zeolite (A51-JHP) is thus expected for the selective removal of Sr2+ in LWTF. The optimization of particle size and flow rate should be examined before practical use.


2017 ◽  
Vol 32 (3) ◽  
pp. 281-287 ◽  
Author(s):  
Marija Sljivic-Ivanovic ◽  
Ivana Jelic ◽  
Aleksandra Loncar ◽  
Dusan Nikezic ◽  
Slavko Dimovic ◽  
...  

The sorption properties of waste facade, brick, and asphalt sample towards Sr(II), Co(II), and Ni(II) ions from single and multicomponent solutions were investigated. The highest sorption capacity was found for Ni(II) ions, while the most effective sorbent was facade. Simplex Centroid Mixture Design was used in order to investigate the sorption processes of ions from solutions with different composition as well as the competition between the cations. Based on the statistical analysis results, the equations for data modeling were proposed. According to the observations, the investigated solid matrices can be effectively used for the liquid radioactive waste treatment. Furthermore, the applied methodology turned out to be an easy and operational way for the investigations of multicomponent sorption processes.


Sign in / Sign up

Export Citation Format

Share Document