scholarly journals Gimbal pivot assembly. Component design report (interim)

1971 ◽  
Author(s):  
H.J. Bronner
2014 ◽  
Vol 952 ◽  
pp. 330-333
Author(s):  
Ting Zhong Wang ◽  
Xiao Hui Li

In order to avoid the flaw including rigid regulations of architecture, strong coupling among modules, removal of fault and advanced technology embedding hard in 3D graphics render engine, a customizable architecture for 3D graphics render engine platform was proposed. The architecture introduced some simulation models which were design standard, expansibility, assembly relation of simulation component resource, development of typical modules and component design. Application developer could customize simulation assembly component flexibly and compose own 3D graphics render engine generally.


2012 ◽  
Vol 466-467 ◽  
pp. 645-649
Author(s):  
Sen Zhang ◽  
Ting Zhong Wang

In order to avoid the flaw including rigid regulations of architecture, strong coupling degree among modules, removal of fault and advanced technology embeding hardly in 3D visual simulation engine, the novel customizable architecture for 3D visual simulation engine platform was proposed. Following simulation theory of the complication system, introduced some simulation models that design standard, expansibility, assembly relation of simulation component resource, development of typical module and component design. Through the models, the rational design strategy of engine was shown clearly. Application developer could customized simulation assembly component flexibly and composed own 3D visual simulation engine generally.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 709
Author(s):  
Uwe Zerbst ◽  
Mauro Madia ◽  
Giovanni Bruno ◽  
Kai Hilgenberg

The safe fatigue design of metallic components fabricated by additive manufacturing (AM) is still a largely unsolved problem. This is primarily due to (a) a significant inhomogeneity of the material properties across the component; (b) defects such as porosity and lack of fusion as well as pronounced surface roughness of the as-built components; and (c) residual stresses, which are very often present in the as-built parts and need to be removed by post-fabrication treatments. Such morphological and microstructural features are very different than in conventionally manufactured parts and play a much bigger role in determining the fatigue life. The above problems require specific solutions with respect to the identification of the critical (failure) sites in AM fabricated components. Moreover, the generation of representative test specimens characterized by similar temperature cycles needs to be guaranteed if one wants to reproducibly identify the critical sites and establish fatigue assessment methods taking into account the effect of defects on crack initiation and early propagation. The latter requires fracture mechanics-based approaches which, unlike common methodologies, cover the specific characteristics of so-called short fatigue cracks. This paper provides a discussion of all these aspects with special focus on components manufactured by laser powder bed fusion (L-PBF). It shows how to adapt existing solutions, identifies fields where there are still gaps, and discusses proposals for potential improvement of the damage tolerance design of L-PBF components.


2021 ◽  
Vol 29 (1) ◽  
pp. 230949902199606
Author(s):  
Takeshi Mochizuki ◽  
Koichiro Yano ◽  
Katsunori Ikari ◽  
Ken Okazaki

Purpose: This study investigated the clinical effects of different patellar components without being affected by the femoral component design in total knee arthritis (TKA) for patients with knee osteoarthritis (OA). Methods: In total, 48 patients with OA who met the criteria of the American College of Rheumatology for OA were enrolled and randomly assigned in a 1:1 ratio to two groups according to the usage of patellar component design for TKA (medialized dome type [dome group] or medialized anatomic type [anatomic group]). To evaluate the clinical outcomes for TKA, knee range of motion (ROM), pain intensity of 0–100 mm visual analog scale (pain VAS), and the Japanese Knee Osteoarthritis Measure (JKOM) score were obtained at baseline and year 1. Results: The difference in knee ROM, pain VAS, or total JKOM score at year 1 was not significant between the dome and anatomic groups ( p = 0.398, 0.733 and 0.536, respectively). Moreover, similar results were obtained for changes in knee ROM, pain VAS, or total JKOM scores from baseline. In both groups, the pain VAS and total JKOM scores were significantly improved at year 1. Conclusion: Both dome and anatomic groups in TKA are significantly effective for pain and function using the JKOM score. However, their efficacy did not differ, according to the JKOM score. Results of this study are rare information focusing on the patellar component design and provide one of the insights into the TKA clinical management.


2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis

When selecting a design for an unmanned aerial vehicle, the choice of the propulsion system is vital in terms of mission requirements, sustainability, usability, noise, controllability, reliability and technology readiness level (TRL). This study analyses the various propulsion systems used in unmanned aerial vehicles (UAVs), paying particular focus on the closed-cycle propulsion systems. The study also investigates the feasibility of using helium closed-cycle gas turbines for UAV propulsion, highlighting the merits and demerits of helium closed-cycle gas turbines. Some of the advantages mentioned include high payload, low noise and high altitude mission ability; while the major drawbacks include a heat sink, nuclear hazard radiation and the shield weight. A preliminary assessment of the cycle showed that a pressure ratio of 4, turbine entry temperature (TET) of 800 °C and mass flow of 50 kg/s could be used to achieve a lightweight helium closed-cycle gas turbine design for UAV mission considering component design constraints.


Author(s):  
Marcus S Dersch ◽  
Matheus Trizotto ◽  
J Riley Edwards ◽  
Arthur de Oliveira

To address a recent challenge related to broken spikes in premium elastic fastening systems that have led to at least ten derailments and require manual walking inspections as well as build upon mechanistic-empirical (M-E) design principles for future fastening system component design, this paper quantifies the vertical, lateral, and longitudinal fastening system loads under revenue service traffic in a curve that has regularly experienced spike fastener fatigue failures. Previous data has indicated that the high rail of Track 3 experienced the most failures at this location. The data from this investigation sheds light into why failures are more predominant at this location than others and how the vertical, lateral, and longitudinal loads cannot be considered independently. Specifically, while the magnitude of the applied loading was the lowest on the high rail of Track 3, the threshold for failure was also the lowest given the operations at this location led to unloading of the high rail, thus indirectly highlighting the importance of friction within a fastening system. The data also show the high rail of Track 3 was subjected to the highest L/V load ratios and was an outlier in the typical lateral load reversals applied likely leading to spike stress reversals and thus a shorter fatigue life. Finally, based upon the data, it is recommended that to mitigate spike failures, as well as similar fastener challenges in other track types (e.g. rail seat deterioration, etc.) railroads should ensure trains operate close to the balance speed and use fastening system that transfer loads through friction. This study also provides novel data for M-E design of fastening systems.


Sign in / Sign up

Export Citation Format

Share Document