scholarly journals HEDL contribution to ONWI, September monthly report: spent fuel characterization

1980 ◽  
Author(s):  
R.J. Cash
2021 ◽  
pp. 5-13
Author(s):  
Yu. Balashevska ◽  
D. Gumenyuk ◽  
Iu. Ovdiienko ◽  
O. Pecherytsia ◽  
I. Shevchenko ◽  
...  

The State Scientific and Technical Center for Nuclear and Radiation Safety (SSTC NRS), a Ukrainian enterprise with a 29-year experience in the area of scientific and technical support to the national nuclear regulator (SNRIU), has been actively involved in international research activities. Participation in the IAEA coordinated research activities is among the SSTC NRS priorities. In the period of 2018–2020, the IAEA accepted four SSTC NRS proposals for participation in respective Coordinated Research Projects (CRPs). These CRPs address scientific and technical issues in different areas such as: 1) performance of probabilistic safety assessment for multi-unit/multi-reactor sites; 2) use of dose projection tools to ensure preparedness and response to nuclear and radiological emergencies; 3) phenomena related to in-vessel melt retention; 4) spent fuel characterization. This article presents a brief overview of the abovementioned projects with definition of scientific contributions by the SSTC NRS (participation in benchmarks, development of methodological documents on implementing research stages and of IAEA technical documents (TECDOC) for demonstration of best practices and results of research carried out by international teams).


2014 ◽  
Vol 118 ◽  
pp. 341-345 ◽  
Author(s):  
M.L. Williams ◽  
G. Ilas ◽  
W.J. Marshall ◽  
B.T. Rearden

2021 ◽  
Vol 247 ◽  
pp. 12008
Author(s):  
Augusto Hernandez-Solis ◽  
Klemen Ambrožič ◽  
Dušan Čalič ◽  
Luca Fiorito ◽  
Bor Kos ◽  
...  

In this paper, two main exercises have been carried out to describe the effect that varying an albedo boundary condition has in the computation of observables such as decay heat, neutron emission rate and nuclide inventory from a PWR fuel assembly (or a configuration of assemblies) during a depletion scenario. The SERPENT2 code was then employed to emphasize the importance of modeling a proper boundary condition for such purposes. Moreover, the effect of taking into account more than a single fuel-pin region for depletion studies while varying the type of boundary condition, was also accounted for. The first exercise has the main objective of comparing in a single fuel assembly the albedo variations ranging from 1.1 up to full vacuum conditions. By comparing to the reference assembly (considered to be the case of full reflective conditions), relative differences up to +17% were observed in decay heat and up to almost -30% in neutron emissions. Also, a clear dependence on the albedo was detected if more than one depletable zone was considered while computing the integral value of observables of interest. Regarding the second exercise, where a 3 × 3 configuration of fuel assemblies is being now considered with a reflector section in the middle, a negligible effect on the observables was observed for the single fuel pin zone case; instead, an effect in the 244Cm computation when analyzing two fuel pin-zones produced a change in the neutron emission rate during cooling time up to 2.5% (while comparing it to the reference single assembly case).


1998 ◽  
Author(s):  
T. Jensen ◽  
T. Aljundi ◽  
J.N. Gray

2018 ◽  
Vol 332 ◽  
pp. 119-126 ◽  
Author(s):  
Marianna Papadionysiou ◽  
Gregory Perret ◽  
Robert Zboray ◽  
Robert Adams ◽  
Jean-Baptiste Mosset

Sign in / Sign up

Export Citation Format

Share Document