scholarly journals Evaluation of subsurface fracture geometry using fluid pressure response to solid earth tidal strain

1984 ◽  
Author(s):  
J.M. Hanson
Geophysics ◽  
1986 ◽  
Vol 51 (4) ◽  
pp. 948-956 ◽  
Author(s):  
Douglas H. Green ◽  
Herbert F. Wang

The pore pressure response of saturated porous rock subjected to undrained compression at low effective stresses are investigated theoretically and experimentally. This behavior is quantified by the undrained pore pressure buildup coefficient, [Formula: see text] where [Formula: see text] is fluid pressure, [Formula: see text] is confining pressure, and [Formula: see text] is the mass of fluid per unit bulk volume. The measured values for B for three sandstones and a dolomite arc near 1.0 at zero effective stress and decrease with increasing effective stress. In one sandstone, B is 0.62 at 13 MPa effective stress. These results agree with the theories of Gassmann (1951) and Bishop (1966), which assume a locally homogeneous solid framework. The decrease of B with increasing effective stress is probably related to crack closure and to high‐compressibility materials within the rock framework. The more general theories of Biot (1955) and Brown and Korringa (1975) introduce an additional parameter, the unjacketed pore compressibility, which can be determined from induced pore pressure results. Values of B close to 1 imply that under appropriate conditions within the crust, zones of low effective pressure characterized by low seismic wave velocity and high wave attenuation could exist. Also, in confined aquifer‐reservoir systems at very low effective stress states, the calculated specific storage coefficient is an order of magnitude larger than if less overpressured conditions prevailed.


2014 ◽  
Vol 997 ◽  
pp. 713-716
Author(s):  
Pu Liu ◽  
Hu Yin ◽  
Tian Xiang Wang ◽  
Meng Han Si

With narrow Density Windows wells and high pressure oil and gas well drilling growing in number, the kick risks becoming increasingly prominent and higher requirements for well control technology being needed, the manage pressure drilling (MPD) technology is used more and more widely. The problems like how to effectively find gas overflowand how to effectively control the overflow in the MPD must be solved.Well must be shuted timely in conventional drilling when overflow happens.The special characteristics of overflow control equipment determines the diversity and effectiveness of its overflow monitoring means in MPD, and the overflow is found more effectively and timely than conventional drilling. Well control risk will increase sharply if kick cannot be timely and effectively identified and controled when overflow occurs. MPD can quickly adjust the wellhead back pressure and inhibit the formation fluid further invasion. Therefore, combining with MPD process and the fluid pressure parameters, the article establishs process of kick recognition and kick control, analyses of the process and analyzes and evaluates the pressure response in process of kick control.MPD can better control the bottom hole pressure in well control situation, ensuring drilling safety. The process of kick recognition and control is of great significance to promote the development and application of kick control technology in MPD.


1983 ◽  
Vol 58 (4) ◽  
pp. 562-565 ◽  
Author(s):  
Ghaleb A. Ghani ◽  
Yung Fong Sung ◽  
Michael S. Weinstein ◽  
George T. Tindall ◽  
Alan S. Fleischer

✓ Ventricular fluid pressure (VFP) and volume-pressure response were measured during nitroglycerin (NTG) infusion in nine patients anesthetized with N2O and fentanyl. The patients' ventilation was controlled, and PaCO2 was kept at 32 ± 4 mm Hg. When an infusion of 0.01% NTG was given intravenously to decrease the mean blood pressure to 95.1%, 84.7%, and 78.2% of control, the VFP increased from control levels of 9.94 ± 2.14 mm Hg to 12.89 ± 2.25, 15.6 ± 2.85, and 14.43 ± 3.45 mm Hg, respectively. The volume-pressure response showed a significant increase when blood pressure decreased to 84.7% and 78.2% of control. These results suggest that intravenous NTG caused an increase in the intracranial pressure and a decrease in the intracranial compliance.


2021 ◽  
Vol 7 ◽  
pp. 491-501
Author(s):  
Bo Wang ◽  
Fujian Zhou ◽  
Hang Zhou ◽  
Hui Ge ◽  
Lizhe Li

1999 ◽  
Vol 89 (6) ◽  
pp. 1439-1446 ◽  
Author(s):  
Timothy L. Masterlark ◽  
Herbert F. Wang ◽  
Lung S. Chan ◽  
Che Yongtai

Abstract A methodology combining prediction-error filters (PEFs) and transfer functions was developed to identify the quasi-static fluid-pressure response observed in wells due to coseismic strain. Water levels in confined aquifers respond to long-term and seasonal trends, recharge events, barometric and ocean tide loading, tidal strain, and tectonic strain. Low-frequency features can be neglected from the quasistatic coseismic response estimation. Transfer functions were constructed to deconvolve the fluid-pressure response due to measured barometric loading. Because direct tidal strain and ocean tide loading measurements are rarely available, theoretical tidal loading is often calculated from astronomical data. However, the calculations are subject to many assumptions. Because tidal driving processes are cyclic, PEFs are a natural choice for removing the fluid-pressure response without assuming a theoretical forcing function in the tidal band. The method was applied to hourly fluid pressure data collected over a 3-year period from two wells in the villages of Gaocun and Tayuan, China. Results of this analysis yielded coseismic fluid pressure heads of −1.6 × 10−2 and +7.6 × 10−2 m for the respective wells in response to the Datong-Yanggao earthquake swarm mainshock (Ms 6.1), 18-24 October 1989. Epicentral distances to the wells were about 200 km. The coseismic fluid-pressure response for each well was also predicted from dislocation model strain scaled by material-dependent volumetric strain sensitivity parameters. These parameters were determined from the static confined response to O1 and M2 earth-tide strain constituents. The predicted response was −2.9 × 10−3 m for the Gaocun well and +2.1 × 10−3 m for the Tayuan well. Although predicted and observed response phases were consistent, both predictions underestimated observed response amplitudes, as has been true in other reported instances.


SPE Journal ◽  
2020 ◽  
Vol 25 (02) ◽  
pp. 573-586 ◽  
Author(s):  
Bo Wang ◽  
Fujian Zhou ◽  
Chen Yang ◽  
Daobing Wang ◽  
Kai Yang ◽  
...  

Summary Temporary plugging and diverting fracturing (TPDF) has become one of the fastest-growing techniques to maximize the stimulated reservoir volume (SRV). During the field operation of TPDF, diverters are injected to redirect the hydraulic fractures into the under-stimulated region of the reservoir, and, thus, to obtain better coverage of the created fracture network. In this study, the commonly used true tri-axial hydraulic fracturing system is modified to investigate the influences of various factors on the injection pressure response and resultant fracture geometry during diversion treatments. The experimental results show the feasibility of creating multiple fractures through TPDF, and more importantly give the following findings: (1) a complex diverted fracture network tends to be created at a small differential stress (2.5 MPa in this case), while diverted fractures tend to grow parallel to the initial fractures at a high differential stress (7.5 MPa in this case); (2) with the same concentration in the fracturing fluid, 40-mesh powder-shaped diverters can plug the created fractures and increase the net pressure more rapidly than 6-mm fiber-shaped diverters; (3) an excess of diverters can lead to a strong injection pressure response, and, thus, enhance the difficulty of creating multiple fractures; (4) when diverters are injected with the fracturing fluid, no obvious breakdown pressure or propagation pressure is shown during the fracture propagation.


Sign in / Sign up

Export Citation Format

Share Document