scholarly journals Design of treatability studies on Hygas coal gasification pilot plant wastewaters

1978 ◽  
Author(s):  
R. Luthy

2014 ◽  
Vol 53 (49) ◽  
pp. 18678-18689 ◽  
Author(s):  
Veena Patil-Shinde ◽  
Tejas Kulkarni ◽  
Rahul Kulkarni ◽  
Prakash D. Chavan ◽  
Tripurari Sharma ◽  
...  


Author(s):  
Tomohiro Asai ◽  
Satoschi Dodo ◽  
Mitsuhiro Karishuku ◽  
Nobuo Yagi ◽  
Yasuhiro Akiyama ◽  
...  

Successful development of oxygen-blown integrated coal gasification combined cycle (IGCC) technology requires gas turbines capable of achieving dry low-nitrogen oxides (NOx) combustion of hydrogen-rich syngas for low emissions and high plant efficiency. The authors have been developing a “multiple-injection burner” to achieve the dry low-NOx combustion of hydrogen-rich syngas. The purposes of this paper are to present test results of the multi-can combustor equipped with multiple-injection burners in an IGCC pilot plant and to evaluate the combustor performance focusing on effects of flame shapes. The syngas fuel produced in the plant contained approximately 50% carbon monoxide, 20% hydrogen, and 20% nitrogen by volume. In the tests, the combustor that produced slenderer flames achieved lower NOx emissions of 10.9 ppm (at 15% oxygen), reduced combustor liner and burner plate metal temperatures, and lowered the combustion efficiency at the maximum load. The test results showed that the slenderer flames were more effective in reducing NOx emissions and liner and burner metal temperatures. These findings demonstrated that the multiple-injection combustor achieved dry low-NOx combustion of the syngas fuel in the plant.



Author(s):  
Tomohiro Asai ◽  
Satoschi Dodo ◽  
Yasuhiro Akiyama ◽  
Akinori Hayashi ◽  
Mitsuhiro Karishuku ◽  
...  

Success of oxygen-blown integrated coal gasification combined cycle (IGCC) technology requires gas turbines capable of achieving dry low nitrogen oxides (NOx) combustion of hydrogen-rich syngas for low emissions and high plant efficiency. The authors have been developing a “multiple-injection burner” to achieve dry low-NOx combustion of such hydrogen-rich fuels using surrogate fuel composed of hydrogen, nitrogen, and methane. The purpose of this paper is to report test results of a multi-can combustor equipped with multiple-injection burners for a practical syngas fuel in an IGCC pilot plant and to evaluate its performance. The syngas fuel consisted of hydrogen, nitrogen, and carbon monoxide up to approximately half of its volume. In the test, the combustor achieved stable and reliable operation from ignition through partial load to the maximum load, and achieved NOx emissions of 15.1 ppm (at 15% oxygen) at the maximum load. These findings demonstrated that the combustor achieves dry low-NOx combustion of the syngas fuel in the IGCC pilot plant.







1982 ◽  
Vol 1 (4) ◽  
pp. 313-335 ◽  
Author(s):  
Cliff I. Davidson ◽  
Suresh Santhanam ◽  
Joseph R. Stetter ◽  
Richard D. Flotard ◽  
Elizabeth Gebert


Sign in / Sign up

Export Citation Format

Share Document