A Dry Low-NOx Gas-Turbine Combustor With Multiple-Injection Burners for Hydrogen-Rich Syngas Fuel: Testing and Evaluation of its Performance in an IGCC Pilot Plant

Author(s):  
Tomohiro Asai ◽  
Satoschi Dodo ◽  
Yasuhiro Akiyama ◽  
Akinori Hayashi ◽  
Mitsuhiro Karishuku ◽  
...  

Success of oxygen-blown integrated coal gasification combined cycle (IGCC) technology requires gas turbines capable of achieving dry low nitrogen oxides (NOx) combustion of hydrogen-rich syngas for low emissions and high plant efficiency. The authors have been developing a “multiple-injection burner” to achieve dry low-NOx combustion of such hydrogen-rich fuels using surrogate fuel composed of hydrogen, nitrogen, and methane. The purpose of this paper is to report test results of a multi-can combustor equipped with multiple-injection burners for a practical syngas fuel in an IGCC pilot plant and to evaluate its performance. The syngas fuel consisted of hydrogen, nitrogen, and carbon monoxide up to approximately half of its volume. In the test, the combustor achieved stable and reliable operation from ignition through partial load to the maximum load, and achieved NOx emissions of 15.1 ppm (at 15% oxygen) at the maximum load. These findings demonstrated that the combustor achieves dry low-NOx combustion of the syngas fuel in the IGCC pilot plant.

Author(s):  
Tomohiro Asai ◽  
Satoschi Dodo ◽  
Mitsuhiro Karishuku ◽  
Nobuo Yagi ◽  
Yasuhiro Akiyama ◽  
...  

Successful development of oxygen-blown integrated coal gasification combined cycle (IGCC) technology requires gas turbines capable of achieving dry low-nitrogen oxides (NOx) combustion of hydrogen-rich syngas for low emissions and high plant efficiency. The authors have been developing a “multiple-injection burner” to achieve the dry low-NOx combustion of hydrogen-rich syngas. The purposes of this paper are to present test results of the multi-can combustor equipped with multiple-injection burners in an IGCC pilot plant and to evaluate the combustor performance focusing on effects of flame shapes. The syngas fuel produced in the plant contained approximately 50% carbon monoxide, 20% hydrogen, and 20% nitrogen by volume. In the tests, the combustor that produced slenderer flames achieved lower NOx emissions of 10.9 ppm (at 15% oxygen), reduced combustor liner and burner plate metal temperatures, and lowered the combustion efficiency at the maximum load. The test results showed that the slenderer flames were more effective in reducing NOx emissions and liner and burner metal temperatures. These findings demonstrated that the multiple-injection combustor achieved dry low-NOx combustion of the syngas fuel in the plant.


Author(s):  
Tomohiro Asai ◽  
Satoschi Dodo ◽  
Hiromi Koizumi ◽  
Hirokazu Takahashi ◽  
Shouhei Yoshida ◽  
...  

The successful combination of coal-based integrated gasification combined cycle (IGCC) technology with carbon dioxide (CO2) capture and storage (CCS) requires gas turbines that can achieve dry low-NOx combustion of hydrogen-rich syngas with a wide range of hydrogen concentrations for lower emissions and higher plant efficiency. The authors have been developing a “multiple-injection burner” to achieve dry low-NOx combustion of such hydrogen-rich fuels. The purpose of this paper is to experimentally investigate the combustion characteristics of a multiple-injection burner with a convex perforated plate in order to determine its effectiveness in suppressing combustion oscillation. The experiments were conducted at atmospheric pressure. Three kinds of fuel with hydrogen concentrations ranging from 40 to 84% were tested. The temperature of the combustion gas at the burner exit was 1775 K. The experimental results show that the convex burner was effective in suppressing combustion oscillation: it achieved stable low-NOx emissions of less than 10 ppm for all the test fuels. These findings demonstrate that the convex burner can achieve stable low-NOx combustion of hydrogen-rich fuels with a wide range of hydrogen concentrations by suppressing combustion oscillation.


Author(s):  
Tomohiro Asai ◽  
Satoschi Dodo ◽  
Mitsuhiro Karishuku ◽  
Nobuo Yagi ◽  
Yasuhiro Akiyama ◽  
...  

The successful development of coal-based integrated gasification combined cycle (IGCC) technology requires gas turbines capable of achieving the dry low-nitrogen oxides (NOx) combustion of hydrogen-rich syngas for low emissions and high plant efficiency. Mitsubishi Hitachi Power Systems, Ltd. (MHPS) has been developing a “multiple-injection combustor” to achieve the dry low-NOx combustion of hydrogen-rich syngas. This study suggests an advanced fuel staging comprising a hybrid partial combustion mode to improve the combustor’s part load performance. The purposes of this paper are to present the test results of the combustor with the advanced staging on a syngas fuel in an IGCC pilot plant, and to evaluate its performance. The syngas fuel produced in the plant contained approximately 50% carbon monoxide, 20% hydrogen, and 20% nitrogen by volume. In the test, the advanced staging reduced the maximum NOx at part load to 44 ppm (at 15% oxygen) compared with the initial staging with a maximum NOx of 75 ppm, and attained higher combustion efficiency above 98.7% over the part load range than the initial staging with combustion efficiency above 97.1%. In conclusion, the advanced staging improved the part load performance by achieving lower NOx emissions and higher combustion efficiency.


Author(s):  
Tomohiro Asai ◽  
Satoschi Dodo ◽  
Mitsuhiro Karishuku ◽  
Nobuo Yagi ◽  
Yasuhiro Akiyama ◽  
...  

The successful development of coal-based integrated gasification combined cycle (IGCC) technology requires gas turbines capable of achieving the dry low nitrogen oxides (NOx) combustion of hydrogen-rich syngas fuels for low emissions and high plant efficiency. Mitsubishi Hitachi Power Systems, Ltd. (MHPS) has been developing a “multiple-injection burner” to achieve the dry low-NOx (DLN) combustion of hydrogen-rich syngas fuels. The purposes of this paper are to present the test results of a multican combustor equipped with multiple-injection burners in an IGCC pilot plant, and evaluate combustor performance by focusing on the effects of flame shapes. The syngas fuel produced in the plant contained approximately 50% carbon monoxide, 20% hydrogen, and 20% nitrogen by volume. In the tests, the combustor with slenderer flames achieved lower NOx emissions of 10.9 ppm (at 15% oxygen), reduced combustor liner and burner plate metal temperatures, and lowered combustion efficiency at the maximum gas turbine load. The test results showed that the slenderer flames were more effective in reducing NOx emissions and liner/burner plate metal temperatures. A comparison with the diffusion-flame combustor demonstrated that the multiple-injection combustors achieved the dry low-NOx combustion of the syngas fuel in the plant.


2021 ◽  
Author(s):  
Alberto Vannoni ◽  
Jose Angel Garcia ◽  
Weimar Mantilla ◽  
Rafael Guedez ◽  
Alessandro Sorce

Abstract Combined Cycle Gas Turbines, CCGTs, are often considered as the bridging technology to a decarbonized energy system thanks to their high exploitation rate of the fuel energetic potential. At present time in most European countries, however, revenues from the electricity market on their own are insufficient to operate existing CCGTs profitably, also discouraging new investments and compromising the future of the technology. In addition to their high efficiency, CCGTs offer ancillary services in support of the operation of the grid such as spinning reserve and frequency control, thus any potential risk of plant decommissioning or reduced investments could translate into a risk for the well-functioning of the network. To ensure the reliability of the electricity system in a transition towards a higher share of renewables, the economic sustainability of CCGTs must be preserved, for which it becomes relevant to monetize properly the ancillary services provided. In this paper, an accurate statistical analysis was performed on the day-ahead, intra-day, ancillary service, and balancing markets for the whole Italian power-oriented CCGT fleet. The profitability of 45 real production units, spread among 6 market zones, was assessed on an hourly basis considering local temperature, specific plant layouts, and off-design performance. The assessment revealed that net income from the ancillary service market doubled, on average, the one from the day-ahead energy market. It was observed that to be competitive in the ancillary services market CCGTs are required to be more flexible in terms of ramp rates, minimum environmental loads, and partial load efficiencies. This paper explores how integrating a Heat Pump and a Thermal Energy Storage within a CCGT could allow improving its competitiveness in the ancillary services market, and thus its profitability, by means of implementing a model of optimal dispatch operating on the ancillary services market.


Author(s):  
M. Sato ◽  
T. Abe ◽  
T. Ninomiya ◽  
T. Nakata ◽  
T. Yoshine ◽  
...  

From the view point of future coal utilization technology for the thermal power generation systems, the coal gasification combined cycle system has drawn special interest recently. In the coal gasification combined cycle power generation system, it is necessary to develop a high temperature gas turbine combustor using a low-BTU gas (LBG) which has high thermal efficiency and low emissions. In Japan a development program of the coal gasification combined cycle power generation system has started in 1985 by the national government and Japanese electric companies. In this program, 1300°C class gas turbines will be developed. If the fuel gas cleaning system is a hot type, the coal gaseous fuel to be supplied to gas turbines will contain ammonia. Ammonia will be converted to nitric oxides in the combustion process in gas turbines. Therefore, low fuel-NOx combustion technology will be one of the most important research subjects. This paper describes low fuel-NOx combustion technology for 1300°C class gas turbine combustors using coal gaseous low-BTU fuel as well as combustion characteristics and carbon monoxide emission characteristics. Combustion tests were conducted using a full-scale combustor used for the 150 MW gas turbine at the atmospheric pressure. Furthermore, high pressure combustion tests were conducted using a half-scale combustor used for the 1 50 MW gas turbine.


Author(s):  
W. P. Parks ◽  
R. R. Ramey ◽  
D. C. Rawlins ◽  
J. R. Price ◽  
M. Van Roode

A Babcock and Wilcox - Solar Turbines Team has completed a program to assess the potential for structural ceramic composites in turbines for direct coal-fired or coal gasification environments. A review is made of the existing processes in direct coal firing, pressurized fluid bed combustors, and coal gasification combined cycle systems. Material requirements in these areas were also discussed. The program examined the state-of-the-art in ceramic composite materials. Utilization of ceramic composites in the turbine rotor blades and nozzle vanes would provide the most benefit. A research program designed to introduce ceramic composite components to these turbines was recommended.


Author(s):  
Rolf H. Kehlhofer

In the past 15 years the combined-cycle (gas/steam turbine) power plant has come into its own in the power generation market. Today, approximately 30 000 MW of power are already installed or being built as combined-cycle units. Combined-cycle plants are therefore a proven technology, showing not only impressive thermal efficiency ratings of up to 50 percent in theory, but also proving them in practice and everyday operation (1) (2). Combined-cycle installations can be used for many purposes. They range from power plants for power generation only, to cogeneration plants for district heating or combined cycles with maximum additional firing (3). The main obstacle to further expansion of the combined cycle principle is its lack of fuel flexibility. To this day, gas turbines are still limited to gaseous or liquid fuels. This paper shows a viable way to add a cheap solid fuel, coal, to the list. The plant system in question is a 2 × 150 MW combined-cycle plant of BBC Brown Boveri with integrated coal gasification plant of British Gas/Lurgi. The main point of interest is that all the individual components of the power plant described in this paper have proven their worth commercially. It is therefore not a pilot plant but a viable commercial proposition.


Author(s):  
Paolo Chiesa ◽  
Giovanni Lozza

Due to their high efficiency and flexibility, aeroderivative gas turbines were often considered as a development basis for intercooled engines, thus providing better efficiency and larger power output. Those machines, originally studied for natural gas, are here considered as the power section of gasification plants for coal and heavy fuels. This paper investigates the matching between intercooled gas turbine, in complex cycle configurations including combined and HAT cycles, and coal gasification processes based on entrained-bed gasifiers, with syngas cooling accomplished by steam production or by full water-quench. In this frame, a good level of integration can be found (i.e. re-use of intercooler heat, availability of cool, pressurized air for feeding air separation units, etc.) to enhance overall conversion efficiency and to reduce capital cast. Thermodynamic aspects of the proposed systems are investigated, to provide an efficiency assessment, in comparison with mare conventional IGCC plants based on heavy-duty gas turbines. The results outline that elevated conversion efficiencies can be achieved by moderate-size intercooled gas turbines in combined cycle, while the HAT configuration presents critical development problems. On the basis of a preliminary cost assessment, cost of electricity produced is lower than the one obtained by heavy-duty machines of comparable size.


Sign in / Sign up

Export Citation Format

Share Document