scholarly journals Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit

2001 ◽  
Author(s):  
J C Wagner
2011 ◽  
Vol 48 (6) ◽  
pp. 855-858 ◽  
Author(s):  
Tatsuro MATSUMURA ◽  
Kazumi MATSUMURA ◽  
Yasuji MORITA ◽  
Yoshikazu KOMA ◽  
Yuichi SANO ◽  
...  

2008 ◽  
Vol 1104 ◽  
Author(s):  
Claude Degueldre ◽  
Wolfgang Wiesenack

AbstractA plutonia stabilised zirconia doped with yttria and erbia has been selected as inert matrix fuel (IMF) at PSI. The results of experimental irradiation tests on yttria-stabilised zirconia doped with plutonia and erbia pellets in the Halden research reactor as well as a study of zirconia solubility are presented. Zirconia must be stabilised by yttria to form a solid solution such as MAz(Y,Er)yPuxZr1-yO2-ζ where minor actinides (MA) oxides are also soluble. (Er,Y,Pu,Zr)O2-ζ (with Pu containing 5% Am) was successfully prepared at PSI and irradiated in the Halden reactor. Emphasis is given on the zirconia-IMF properties under in-pile irradiation, on the fuel material centre temperatures and on the fission gas release. The retention of fission products in zirconia may be stronger at similar temperature, compared to UO2. The outstanding behaviour of plutonia-zirconia inert matrix fuel is compared to the classical (U,Pu)O2 fuels. The properties of the spent fuel pellets are presented focusing on the once through strategy. For this strategy, low solubility of the inert matrix is required for geological disposal. This parameter was studied in detail for a range of solutions corresponding to groundwater under near field conditions. Under these conditions the IMF solubility is about 109 times smaller than glass, several orders of magnitude lower than UO2 in oxidising conditions (Yucca Mountain) and comparable in reducing conditions, which makes the zirconia material very attractive for deep geological disposal. The behaviour of plutonia-zirconia inert matrix fuel is discussed within a burn and bury strategy.


2017 ◽  
Vol 53 (28) ◽  
pp. 4010-4013 ◽  
Author(s):  
Ashfaq Afsar ◽  
Petr Distler ◽  
Laurence M. Harwood ◽  
Jan John ◽  
James Westwood

Novel BTBP [bis-(1,2,4-triazin-3-yl)-2,2′-bipyridine]/BTPhen [bis-(1,2,4-triazin-3-yl)-1,10-phenanthroline] functionalized silica gels have been developed to extract minor actinides, lanthanides and other fission products.


2012 ◽  
Vol 49 (3) ◽  
pp. 334-342 ◽  
Author(s):  
Shigekazu Usuda ◽  
Yuezhou Wei ◽  
Yuanlai Xu ◽  
Zheng Li ◽  
Ruiqin Liu ◽  
...  

2006 ◽  
Vol 45 ◽  
pp. 1907-1914
Author(s):  
Claude Degueldre

The toxicity of the UO2 spent fuel is dominated by plutonium and minor actinides (MA): Np, Am and Cm, after decay of the short live fission products. Zirconia ceramics containing Pu and MA in the form of an Inert Matrix Fuel (IMF) could be used to burn these actinides in Light Water Reactors. Optimisation of the fuel designs dictated by properties such as thermal, mechanical, chemical and physical must be performed with attention for their behaviour under irradiation. Zirconia must be stabilised by yttria to form a solid solution such as AnzYyPuxZr1-yO2-y where minor actinide oxides are also soluble. Burnable poison may be added if necessary such as Gd, Ho, Er, Eu or Np, Am them-self. These cubic solid solutions are stable under heavy ion irradiation. The retention of fission products in zirconia, under similar thermodynamic conditions, is a priori stronger, compared to UO2, the lattice parameter being larger for UO2 than for (Y,Zr)O2-x. (Er,Y,Pu,Zr)O2-x in which Pu contains 5% Am was successfully irradiated in the Proteus reactor at PSI, in the HFR facility, Petten as well as in the Halden Reactor. These irradiations make the Swiss scientists confident to irradiate such IMF in a commercial reactor that would allow later a commercial deployment of such a fuel for Pu and MA utilisation in a last cycle. The fuel forms namely pellet of solid solution, cercer or cermet fuel are discussed considering the once through strategy. For this strategy, low solubility of the inert matrix is required for geological disposal. As spent fuels these IMF’s are demanding materials from the solubility point of view, this parameter was studied in detail for a range of solutions corresponding to groundwater under near field conditions. Under these conditions the IMF solubility is 106 times smaller than glass, which makes the zirconia material very attractive for deep geological disposal. The desired objective would be to use IMF to produce energy in reactors, opting for an economical and ecological solution.


2014 ◽  
Vol 118 ◽  
pp. 72-77 ◽  
Author(s):  
M. Igashira ◽  
T. Katabuchi ◽  
H. Harada ◽  
S. Nakamura ◽  
A. Kimura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document