scholarly journals Health, Safety, and Environmental Screening and Ranking Frameworkfor Geologic CO2 Storage Site Selection

2005 ◽  
Author(s):  
Curtis M. Oldenburg
2009 ◽  
Vol 49 (1) ◽  
pp. 405
Author(s):  
Diane Labregere ◽  
Norhafiz Marmin ◽  
Suzanne Hurter ◽  
Johan Berge ◽  
Alexander A. Lukyanov

Effective geological storage of CO2 can be accomplished through a number of trapping mechanisms. Physical trapping is achieved through either CO2 being trapped under a structural closure or CO2 made immobile in the pore space, as residual saturation, by capillary action. Geochemical trapping, which might be regarded as a more secure mode of storage, is achieved through dissolution of CO2 in formation water and precipitation of carbonates. The dissolution rate depends on surface contact and is generally enhanced by greater CO2 plume movement. During site selection, a potential injection well location is commonly evaluated with respect to the proximity to potential leakage features. This paper investigates requirements for separation distance between CO2 injection location and potential leakage features in highly permeable steeply dipping brine reservoir settings. Reservoir models are simulated with a compositional code and sensitivity analyses performed with variations in reservoir permeability, hysteresis effects, and formation dip. Trapping mechanisms, over a timescale of several centuries, are illustrated as key indicators for containment and storage performance. Study results suggest that the amount of CO2 trapped by dissolution and residual saturation is enhanced by a dynamically flowing plume. The simulation results demonstrate that the separation distance requirement typically envisaged in a worst-case reservoir geometry setting is commonly overly conservative, representing opportunity for further optimisation. Numerical simulation is useful in addressing the complex reality of flow dynamics such as hysteresis in footprint prediction. Understanding CO2 plume migration scenarios relative to potential leakage risks, under various key reservoir key properties, is essential in storage containment and capacity assessments for storage site selection and development.


2021 ◽  
pp. 105309
Author(s):  
Juan Alcalde ◽  
Niklas Heinemann ◽  
Alan James ◽  
Clare E. Bond ◽  
Saeed Ghanbari ◽  
...  

2019 ◽  
Author(s):  
Niklas Heinemann ◽  
Hazel Robertson ◽  
Juan Alcalde ◽  
Alan James ◽  
Saeed Ghanbari ◽  
...  

2019 ◽  
Author(s):  
Bernd Wiese ◽  
Wolfgang Weinzierl ◽  
Cornelia Schmidt-Hattenberger

2019 ◽  
Author(s):  
Jonathan Ogland-Hand ◽  
Marcos W. Miranda ◽  
Jeffrey Bielicki ◽  
Benjamin M. Adams ◽  
Thomas Buscheck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document