scholarly journals Publications and geothermal sample library facilities of the Earth Science Laboratory, University of Utah Research Institute

1990 ◽  
Author(s):  
Phillip M. Wright ◽  
Kathryn A. Ruth ◽  
David R. Langton ◽  
Michael J. Bullett
Radiocarbon ◽  
2001 ◽  
Vol 43 (2B) ◽  
pp. 731-742 ◽  
Author(s):  
D Lal ◽  
A J T Jull

Nuclear interactions of cosmic rays produce a number of stable and radioactive isotopes on the earth (Lai and Peters 1967). Two of these, 14C and 10Be, find applications as tracers in a wide variety of earth science problems by virtue of their special combination of attributes: 1) their source functions, 2) their half-lives, and 3) their chemical properties. The radioisotope, 14C (half-life = 5730 yr) produced in the earth's atmosphere was the first to be discovered (Anderson et al. 1947; Libby 1952). The next longer-lived isotope, also produced in the earth's atmosphere, 10Be (half-life = 1.5 myr) was discovered independently by two groups within a decade (Arnold 1956; Goel et al. 1957; Lal 1991a). Both the isotopes are produced efficiently in the earth's atmosphere, and also in solids on the earth's surface. Independently and jointly they serve as useful tracers for characterizing the evolutionary history of a wide range of materials and artifacts. Here, we specifically focus on the production of 14C in terrestrial solids, designated as in-situ-produced 14C (to differentiate it from atmospheric 14C, initially produced in the atmosphere). We also illustrate the application to several earth science problems. This is a relatively new area of investigations, using 14C as a tracer, which was made possible by the development of accelerator mass spectrometry (AMS). The availability of the in-situ 14C variety has enormously enhanced the overall scope of 14C as a tracer (singly or together with in-situ-produced 10Be), which eminently qualifies it as a unique tracer for studying earth sciences.


2020 ◽  
Vol 42 (4) ◽  
pp. 478-484
Author(s):  
Kirill Golikov ◽  
Ekaterina LAPTEVA ◽  
A. SOCHIVKO

The article discusses the use of live plants as the botanical exposition component supplement of the “Natural areas” (hall № 17 “Natural zonality and its components” and № 20 “Desert, subtropical, tropical countries, high-altitude zone”) and “Physico-georaphic regions” (hall № 24 “Continents and parts of the world”) departments in order to visualize information presented in the Earth Science Museum. Demonstration of plants originating from different regions of the world representing different life forms and being structural components of various plant communities allows to visually characterizing thematic aspects of an exposition. That in turn reveal such principles of systematic nature organization as ecobiomorphic and phytocenotic.


2016 ◽  
Vol 34 (2-3) ◽  
pp. 211-231 ◽  
Author(s):  
Nigel Clark

Modern western political thought revolves around globality, focusing on the partitioning and the connecting up of the earth’s surface. But climate change and the Anthropocene thesis raise pressing questions about human interchange with the geological and temporal depths of the earth. Drawing on contemporary earth science and the geophilosophy of Deleuze and Guattari, this article explores how geological strata are emerging as provocations for political issue formation. The first section reviews the emergence – and eventual turn away from – concern with ‘revolutions of the earth’ during the 18th- and 19th-century discovery of ‘geohistory’. The second section looks at the subterranean world both as an object of ‘downward’ looking territorial imperatives and as the ultimate power source of all socio-political life. The third section weighs up the prospects of ‘earth system governance’. The paper concludes with some general thoughts about the possibilities of ‘negotiating strata’ in more generative and judicious ways.


Sign in / Sign up

Export Citation Format

Share Document