The Impact of Ancillary Subunits on Small-Molecule Interactions with Voltage-Gated Potassium Channels

2006 ◽  
Vol 12 (18) ◽  
pp. 2285-2302 ◽  
Author(s):  
Gianina Panaghie ◽  
Geoffrey Abbott
2021 ◽  
Author(s):  
Matteo Borgini ◽  
Pravat Mondal ◽  
Ruiting Liu ◽  
Peter Wipf

This review describes the synthetic and medicinal chemistry of small molecule modulators of the voltage-gated Kv7 (KCNQ) potassium channels and the available data of their biological and clinical properties.


2017 ◽  
Author(s):  
Jeremy T. Chang ◽  
Michael J. Higley

AbstractGABAergic inhibition plays a critical role in the regulation of neuronal activity. In the neocortex, inhibitory interneurons that target the dendrites of pyramidal cells influence both electrical and biochemical postsynaptic signaling. Voltage-gated ion channels strongly shape dendritic excitability and the integration of excitatory inputs, but their contribution to GABAergic signaling is less well understood. By combining 2-photon calcium imaging and focal GABA uncaging, we show that voltage-gated potassium channels normally suppress the GABAergic inhibition of calcium signals evoked by back-propagating action potentials in dendritic spines and shafts of cortical pyramidal neurons. Moreover, the voltage-dependent inactivation of these channels leads to enhancement of dendritic calcium inhibition following somatic spiking. Computational modeling reveals that the enhancement of calcium inhibition involves an increase in action potential depolarization coupled with the nonlinear relationship between membrane voltage and calcium channel activation. Overall, our findings highlight the interaction between intrinsic and synaptic properties and reveal a novel mechanism for the activity-dependent scaling of GABAergic inhibition.Significance StatementGABAergic inhibition potently regulates neuronal activity in the neocortex. How such inhibition interacts with the intrinsic electrophysiological properties of single neurons is not well-understood. Here we investigate the ability of voltage-gated potassium channels to regulate the impact of GABAergic inhibition in the dendrites of neocortical pyramidal neurons. Our results show that potassium channels normally reduce inhibition directed towards pyramidal neuron dendrites. However, these channels are inactivated by strong neuronal activity, leading to an enhancement of GABAergic potency and limiting the corresponding influx of dendritic calcium. Our findings illustrate a previously unappreciated relationship between neuronal excitability and GABAergic inhibition.


2021 ◽  
Vol 10 (6) ◽  
pp. 1239
Author(s):  
Alexandru Cojocaru ◽  
Emilia Burada ◽  
Adrian-Tudor Bălșeanu ◽  
Alexandru-Florian Deftu ◽  
Bogdan Cătălin ◽  
...  

As the average age and life expectancy increases, the incidence of both acute and chronic central nervous system (CNS) pathologies will increase. Understanding mechanisms underlying neuroinflammation as the common feature of any neurodegenerative pathology, we can exploit the pharmacology of cell specific ion channels to improve the outcome of many CNS diseases. As the main cellular player of neuroinflammation, microglia play a central role in this process. Although microglia are considered non-excitable cells, they express a variety of ion channels under both physiological and pathological conditions that seem to be involved in a plethora of cellular processes. Here, we discuss the impact of modulating microglia voltage-gated, potential transient receptor, chloride and proton channels on microglial proliferation, migration, and phagocytosis in neurodegenerative diseases.


2021 ◽  
Vol 11 (8) ◽  
pp. 1035
Author(s):  
Maria Pia Giannoccaro ◽  
Patrizia Avoni ◽  
Rocco Liguori

The neuromuscular junction (NMJ) is the target of a variety of immune-mediated disorders, usually classified as presynaptic and postsynaptic, according to the site of the antigenic target and consequently of the neuromuscular transmission alteration. Although less common than the classical autoimmune postsynaptic myasthenia gravis, presynaptic disorders are important to recognize due to the frequent association with cancer. Lambert Eaton myasthenic syndrome is due to a presynaptic failure to release acetylcholine, caused by antibodies to the presynaptic voltage-gated calcium channels. Acquired neuromyotonia is a condition characterized by nerve hyperexcitability often due to the presence of antibodies against proteins associated with voltage-gated potassium channels. This review will focus on the recent developments in the autoimmune presynaptic disorders of the NMJ.


Biochemistry ◽  
1996 ◽  
Vol 35 (50) ◽  
pp. 15989-15996 ◽  
Author(s):  
Terrence R. Burke, ◽  
Bin Ye ◽  
Xinjian Yan ◽  
Shaomeng Wang ◽  
Zongchao Jia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document