Drugs of Abuse-Induced Hyperthermia, Blood-Brain Barrier Dysfunction and Neurotoxicity: Neuroprotective Effects of a New Antioxidant Compound H-290/51

2007 ◽  
Vol 13 (18) ◽  
pp. 1903-1923 ◽  
Author(s):  
Hari Shanker Sharma ◽  
Per-Ove Sjoquist ◽  
Syed F. Ali
Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 837
Author(s):  
Takashi Fujimoto ◽  
Yoichi Morofuji ◽  
Andrej Kovac ◽  
Michelle A. Erickson ◽  
Mária A. Deli ◽  
...  

Statins have neuroprotective effects on neurological diseases, including a pleiotropic effect possibly related to blood–brain barrier (BBB) function. In this study, we investigated the effects of pitavastatin (PTV) on lipopolysaccharide (LPS)-induced BBB dysfunction in an in vitro BBB model comprising cocultured primary mouse brain endothelial cells, pericytes, and astrocytes. LPS (1 ng/mL, 24 h) increased the permeability and lowered the transendothelial electrical resistance of the BBB, and the co-administration of PTV prevented these effects. LPS increased the release of interleukin-6, granulocyte colony-stimulating factor, keratinocyte-derived chemokine, monocyte chemotactic protein-1, and regulated on activation, normal T-cell expressed and secreted from the BBB model. PTV inhibited the LPS-induced release of these cytokines. These results suggest that PTV can ameliorate LPS-induced BBB dysfunction, and these effects might be mediated through the inhibition of LPS-induced cytokine production. Clinically, therapeutic approaches using statins combined with novel strategies need to be designed. Our present finding sheds light on the pharmacological significance of statins in the treatment of central nervous system diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Zhezhe Sun ◽  
Mark Nyanzu ◽  
Su Yang ◽  
Xiaohong Zhu ◽  
Kankai Wang ◽  
...  

Background. Traumatic brain injury (TBI) refers to temporary or permanent damage to brain function caused by penetrating objects or blunt force trauma. TBI activates inflammasome-mediated pathways and other cell death pathways to remove inactive and damaged cells, however, they are also harmful to the central nervous system. The newly discovered cell death pattern termed pyroptosis has become an area of interest. It mainly relies on caspase-1-mediated pathways, leading to cell death. Methods. Our research focus is VX765, a known caspase-1 inhibitor which may offer neuroprotection after the process of TBI. We established a controlled cortical impact (CCI) mouse model and then controlled the degree of pyroptosis in TBI with VX765. The effects of caspase-1 inhibition on inflammatory response, pyroptosis, blood-brain barrier (BBB), apoptosis, and microglia activation, in addition to neurological deficits, were investigated. Results. We found that TBI led to NOD-like receptors (NLRs) as well as absent in melanoma 2 (AIM2) inflammasome-mediated pyroptosis in the damaged cerebral cortex. VX765 curbed the expressions of indispensable inflammatory subunits (caspase-1 as well as key downstream proinflammatory cytokines such as interleukin- (IL-) 1β and IL-18). It also inhibited gasdermin D (GSDMD) cleavage and apoptosis-associated spot-like protein (ASC) oligomerization in the injured cortex. In addition to the above, VX765 also inhibited the inflammatory activity of the high-mobility cassette -1/Toll-like receptor 4/nuclear factor-kappa B (HMGB1/TLR4/NF-kappa B) pathway. By inhibiting pyroptosis and inflammatory mediator expression, we demonstrated that VX765 can decrease blood-brain barrier (BBB) leakage, apoptosis, and microglia polarization to exhibit its neuroprotective effects. Conclusion. In conclusion, VX765 can counteract neurological damage after TBI by reducing pyroptosis and HMGB1/TLR4/NF-κB pathway activities. VX765 may have a good therapeutic effect on TBI.


Nature ◽  
2020 ◽  
Vol 581 (7806) ◽  
pp. 71-76 ◽  
Author(s):  
Axel Montagne ◽  
Daniel A. Nation ◽  
Abhay P. Sagare ◽  
Giuseppe Barisano ◽  
Melanie D. Sweeney ◽  
...  

Shock ◽  
2019 ◽  
Vol 51 (5) ◽  
pp. 634-649 ◽  
Author(s):  
Anita C. Randolph ◽  
Satoshi Fukuda ◽  
Koji Ihara ◽  
Perenlei Enkhbaatar ◽  
Maria-Adelaide Micci

Sign in / Sign up

Export Citation Format

Share Document