One-Pot Glycosylation (OPG) for the Chemical Synthesis of Oligosaccharides

2005 ◽  
Vol 9 (2) ◽  
pp. 179-194 ◽  
Author(s):  
Biao Yu ◽  
Zunyi Yang ◽  
Hongzhi Cao
Keyword(s):  
2014 ◽  
Vol 50 (44) ◽  
pp. 5837-5839 ◽  
Author(s):  
Man Pan ◽  
Yao He ◽  
Ming Wen ◽  
Fangming Wu ◽  
Demeng Sun ◽  
...  

An efficient one-pot chemical synthesis of snake venom toxin Mambalgin-1 was achieved using an azide-switch strategy combined with hydrazide-based native chemical ligation.


Nanoscale ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 1128-1137 ◽  
Author(s):  
Alicia Moya ◽  
Mercedes Hernando-Pérez ◽  
Marta Pérez-Illana ◽  
Carmen San Martín ◽  
Julio Gómez-Herrero ◽  
...  

Hybridization of imine-based covalent organic framework (COF-300) on oxidized MWCNT surface have been designed and succesfully developed for the first time in one-pot chemical synthesis.


2020 ◽  
Vol 56 (46) ◽  
pp. 6217-6220
Author(s):  
Kosuke Nakamoto ◽  
Naoko Abe ◽  
Genichiro Tsuji ◽  
Yasuaki Kimura ◽  
Fumiaki Tomoike ◽  
...  

Circular RNA without a stop codon enables rolling circle translation. we carried out one-pot chemical synthesis of circular RNA from RNA fragments. The synthesized circular RNAs acted as translation templates, despite the presence of unnatural phosphoramidate linkages.


2019 ◽  
Vol 131 (41) ◽  
pp. 14752-14756 ◽  
Author(s):  
Zhenguang Zhao ◽  
Norman Metanis
Keyword(s):  

ChemInform ◽  
2005 ◽  
Vol 36 (46) ◽  
Author(s):  
Biao Yu ◽  
Zunyi Yang ◽  
Hongzhi Cao
Keyword(s):  

2014 ◽  
Vol 10 ◽  
pp. 1657-1669 ◽  
Author(s):  
Ilja V Fateev ◽  
Konstantin V Antonov ◽  
Irina D Konstantinova ◽  
Tatyana I Muravyova ◽  
Frank Seela ◽  
...  

Two approaches to the synthesis of 2-chloro-9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)adenine (1, clofarabine) were studied. The first approach consists in the chemical synthesis of 2-deoxy-2-fluoro-α-D-arabinofuranose-1-phosphate (12a, 2FAra-1P) via three step conversion of 1,3,5-tri-O-benzoyl-2-deoxy-2-fluoro-α-D-arabinofuranose (9) into the phosphate 12a without isolation of intermediary products. Condensation of 12a with 2-chloroadenine catalyzed by the recombinant E. coli purine nucleoside phosphorylase (PNP) resulted in the formation of clofarabine in 67% yield. The reaction was also studied with a number of purine bases (2-aminoadenine and hypoxanthine), their analogues (5-aza-7-deazaguanine and 8-aza-7-deazahypoxanthine) and thymine. The results were compared with those of a similar reaction with α-D-arabinofuranose-1-phosphate (13a, Ara-1P). Differences of the reactivity of various substrates were analyzed by ab initio calculations in terms of the electronic structure (natural purines vs analogues) and stereochemical features (2FAra-1P vs Ara-1P) of the studied compounds to determine the substrate recognition by E. coli nucleoside phosphorylases. The second approach starts with the cascade one-pot enzymatic transformation of 2-deoxy-2-fluoro-D-arabinose into the phosphate 12a, followed by its condensation with 2-chloroadenine thereby affording clofarabine in ca. 48% yield in 24 h. The following recombinant E. coli enzymes catalyze the sequential conversion of 2-deoxy-2-fluoro-D-arabinose into the phosphate 12a: ribokinase (2-deoxy-2-fluoro-D-arabinofuranose-5-phosphate), phosphopentomutase (PPN; no 1,6-diphosphates of D-hexoses as co-factors required) (12a), and finally PNP. The substrate activities of D-arabinose, D-ribose and D-xylose in the similar cascade syntheses of the relevant 2-chloroadenine nucleosides were studied and compared with the activities of 2-deoxy-2-fluoro-D-arabinose. As expected, D-ribose exhibited the best substrate activity [90% yield of 2-chloroadenosine (8) in 30 min], D-arabinose reached an equilibrium at a concentration of ca. 1:1 of a starting base and the formed 2-chloro-9-(β-D-arabinofuranosyl)adenine (6) in 45 min, the formation of 2-chloro-9-(β-D-xylofuranosyl)adenine (7) proceeded very slowly attaining ca. 8% yield in 48 h.


Sign in / Sign up

Export Citation Format

Share Document