Double-Strand Breaks Repair by Non-Homologous DNA End Joining in Mammalian Cells

2006 ◽  
Vol 7 (5) ◽  
pp. 311-322 ◽  
Author(s):  
Mariusz Malinowski ◽  
Elzbieta Pastwa
2007 ◽  
Vol 85 (6) ◽  
pp. 663-674 ◽  
Author(s):  
Kendra L. Cann ◽  
Geoffrey G. Hicks

DNA double-strand breaks occur frequently in cycling cells, and are also induced by exogenous sources, including ionizing radiation. Cells have developed integrated double-strand break response pathways to cope with these lesions, including pathways that initiate DNA repair (either via homologous recombination or nonhomologous end joining), the cell-cycle checkpoints (G1–S, intra-S phase, and G2–M) that provide time for repair, and apoptosis. However, before any of these pathways can be activated, the damage must first be recognized. In this review, we will discuss how the response of mammalian cells to DNA double-strand breaks is regulated, beginning with the activation of ATM, the pinnacle kinase of the double-strand break signalling cascade.


2004 ◽  
Vol 24 (19) ◽  
pp. 8323-8331 ◽  
Author(s):  
Toshio Ishikawa ◽  
Eun Jig Lee ◽  
J. Larry Jameson

ABSTRACT Cointroduction of plasmids into mammalian cells is commonly used to investigate transcription factor regulation of reporter genes or to normalize transfection efficiency. We report here that cotransfected DNA molecules commonly transfer enhancer elements from one plasmid to another. Using separate Renilla or Firefly luciferase reporters, we found that an estrogen response element (ERE) originally linked to one of the reporters stimulated expression of the non-ERE-containing reporter. Similar enhancer transfer was seen with the cytomegalovirus enhancer. This enhancer transfer effect was not seen when cells were transfected separately with the reporters and the extracts were then combined before luciferase assays. The degree of enhancer transfer increased with transfected plasmid concentration and was greater when linearized rather than circular plasmid DNA was used. We hypothesized that double-strand breaks and heteroligation of cointroduced DNA molecules mediated the transfer of regulatory elements from one molecule to another. PCR of transfected plasmid DNA confirmed nonhomologous end-joining (NHEJ) ligation of DNA fragments originally present in separate plasmids. The NHEJ reaction was enhanced by UV light treatment to introduce double-strand breaks, and it was greater after liposome-mediated transfection than after calcium-phosphate-mediated transfection. NHEJ also occurred after adenoviral transfer of DNA into cells. We conclude that NHEJ mediates the transfer of regulatory DNA elements among cointroduced DNA molecules. These findings indicate the need for caution when interpreting results of transfection experiments containing more than one plasmid and suggest a mechanism whereby viruses or other exogenous DNA might recombine to activate unrelated genes.


2009 ◽  
Vol 423 (2) ◽  
pp. 157-168 ◽  
Author(s):  
Andrea J. Hartlerode ◽  
Ralph Scully

DNA chromosomal DSBs (double-strand breaks) are potentially hazardous DNA lesions, and their accurate repair is essential for the successful maintenance and propagation of genetic information. Two major pathways have evolved to repair DSBs: HR (homologous recombination) and NHEJ (non-homologous end-joining). Depending on the context in which the break is encountered, HR and NHEJ may either compete or co-operate to fix DSBs in eukaryotic cells. Defects in either pathway are strongly associated with human disease, including immunodeficiency and cancer predisposition. Here we review the current knowledge of how NHEJ and HR are controlled in somatic mammalian cells, and discuss the role of the chromatin context in regulating each pathway. We also review evidence for both co-operation and competition between the two pathways.


2015 ◽  
Vol 35 (17) ◽  
pp. 3017-3028 ◽  
Author(s):  
Sunetra Roy ◽  
Abinadabe J. de Melo ◽  
Yao Xu ◽  
Satish K. Tadi ◽  
Aurélie Négrel ◽  
...  

The classic nonhomologous end-joining (c-NHEJ) pathway is largely responsible for repairing double-strand breaks (DSBs) in mammalian cells. XLF stimulates the XRCC4/DNA ligase IV complex by an unknown mechanism. XLF interacts with XRCC4 to form filaments of alternating XRCC4 and XLF dimers that bridge DNA endsin vitro, providing a mechanism by which XLF might stimulate ligation. Here, we characterize two XLF mutants that do not interact with XRCC4 and cannot form filaments or bridge DNAin vitro. One mutant is fully sufficient in stimulating ligation by XRCC4/Lig4in vitro; the other is not. This separation-of-function mutant (which must function as an XLF homodimer) fully complements the c-NHEJ deficits of some XLF-deficient cell strains but not others, suggesting a variable requirement for XRCC4/XLF interaction in living cells. To determine whether the lack of XRCC4/XLF interaction (and potential bridging) can be compensated for by other factors, candidate repair factors were disrupted in XLF- or XRCC4-deficient cells. The loss of either ATM or the newly described XRCC4/XLF-like factor, PAXX, accentuates the requirement for XLF. However, in the case of ATM/XLF loss (but not PAXX/XLF loss), this reflects a greater requirement for XRCC4/XLF interaction.


2015 ◽  
Author(s):  
Jonathan M Geisinger ◽  
Sören Turan ◽  
Sophia Hernandez ◽  
Laura P Spector ◽  
Michele P Calos

The ability to precisely modify the genome in a site-specific manner is extremely useful. The CRISPR/Cas9 system facilitates precise modifications by generating RNA-guided double-strand breaks. We demonstrate that guide RNA pairs generate deletions that are repaired with a high level of precision by non-homologous end-joining in mammalian cells. We present a method called knock-in blunt ligation for exploiting this excision and repair to insert exogenous sequences in a homology-independent manner without loss of additional nucleotides. We successfully utilize this method in a human immortalized cell line and induced pluripotent stem cells to insert fluorescent protein cassettes into various loci, with efficiencies up to 35.8% in HEK293 cells. We also present a version of Cas9 fused to the FKBP12-L106P destabilization domain for investigating repair dynamics of Cas9-induced double-strand breaks. Our in vivo blunt-end cloning method and destabilization-domain-fused Cas9 variant increase the repertoire of precision genome engineering approaches.


2002 ◽  
Vol 22 (16) ◽  
pp. 5869-5878 ◽  
Author(s):  
Cecilia Lundin ◽  
Klaus Erixon ◽  
Catherine Arnaudeau ◽  
Niklas Schultz ◽  
Dag Jenssen ◽  
...  

ABSTRACT Homologous recombination (HR) and nonhomologous end joining (NHEJ) play overlapping roles in repair of DNA double-strand breaks (DSBs) generated during the S phase of the cell cycle. Here, we characterized the involvement of HR and NHEJ in the rescue of DNA replication forks arrested or slowed by treatment of hamster cells with hydroxyurea or thymidine. We show that the arrest of replication with hydroxyurea generates DNA fragmentation as a consequence of the formation of DSBs at newly replicated DNA. Both HR and NHEJ protected cells from the lethal effects of hydroxyurea, and this agent also increased the frequency of recombination mediated by both homologous and nonhomologous exchanges. Thymidine induced a less stringent arrest of replication and did not generate detectable DSBs. HR alone rescued cells from the lethal effects of thymidine. Furthermore, thymidine increased the frequency of DNA exchange mediated solely by HR in the absence of detectable DSBs. Our data suggest that both NHEJ and HR are involved in repair of arrested replication forks that include a DSB, while HR alone is required for the repair of slowed replication forks in the absence of detectable DSBs.


Sign in / Sign up

Export Citation Format

Share Document