Oral semaglutide in the management of type 2 DM: Clinical status and comparative analysis

2021 ◽  
Vol 22 ◽  
Author(s):  
Ilora Bandyopadhyay ◽  
Sunny Dave ◽  
Amita Rai ◽  
Madhavan Nampoothiri ◽  
Mallikarjuna Rao Chamallamudi ◽  
...  

Background: In the incretin system, Glucagon-like peptide-1 (GLP-1) is a hormone that inhibits the release of glucagon and regulates glucose-dependent insulin secretion. In type 2 diabetes, correcting the impaired incretin system using GLP-1 agonist is a well-defined therapeutic strategy. Objectives: This review article aims to discuss the mechanism of action, key regulatory events, clinical trials for glycaemic control and comparative analysis of semaglutide with the second-line antidiabetic drugs. Description: Semaglutide is a glucagon-like peptide 1 (GLP 1) receptor agonist with enhanced glycaemic control in diabetes patients. In 2019, USFDA approved the first oral GLP-1 receptor agonist, semaglutide to be administered as a once-daily tablet. Further, recent studies highlight the ability of semaglutide to improve the glycaemic control in obese patients with a reduction in body weight. Still, in clinical practice, in type 2 DM treatment paradigm the impact of oral semaglutide remains unidentified. This review article discusses the mechanism of action, pharmacodynamics, key regulatory events, and clinical trials regarding glycaemic control. Conclusion: The review highlights the comparative analysis of semaglutide with the existing second-line drugs for the management of type 2 diabetes mellitus by stressing on its benefits and adverse events.

1998 ◽  
Vol 95 (3) ◽  
pp. 325-329 ◽  
Author(s):  
Jeannie F. TODD ◽  
C. Mark B. EDWARDS ◽  
Mohammad A. GHATEI ◽  
Hugh M. MATHER ◽  
Stephen R. BLOOM

1.Glucagon-like peptide-1 (7-36) amide (GLP-1) is released into the circulation after meals and is the most potent physiological insulinotropic hormone in man. GLP-1 has the advantages over other therapeutic agents for Type 2 diabetes of also suppressing glucagon secretion and delaying gastric emptying. One of the initial abnormalities of Type 2 diabetes is the loss of the first-phase insulin response, leading to postprandial hyperglycaemia. 2.To investigate the therapeutic potential of GLP-1 in Type 2 diabetes, six patients were entered into a 6-week, double-blind crossover trial during which each received 3 weeks treatment with subcutaneous GLP-1 or saline, self-administered three times a day immediately before meals. A standard test meal was given at the beginning and end of each treatment period. 3.GLP-1 reduced plasma glucose area under the curve (AUC) after the standard test meal by 58% (AUC, 0–240 ;min: GLP-1 start of treatment, 196±141 ;mmol·min-1·l-1; saline start of treatment, 469±124 ;mmol·min-1·l-1; F = 16.4, P< 0.05). The plasma insulin excursions were significantly higher with GLP-1 compared with saline over the initial postprandial 30 ;min, the time period during which the GLP-1 concentration was considerably elevated. The plasma glucagon levels were significantly lower over the 240-min postprandial period with GLP-1 treatment. The beneficial effects of GLP-1 on plasma glucose, insulin and glucagon concentrations were fully maintained for the 3-week treatment period. 4.We have demonstrated a significant improvement in postprandial glycaemic control with subcutaneous GLP-1 treatment. GLP-1 improves glycaemic control partially by restoring the first-phase insulin response and suppressing glucagon and is a potential treatment for Type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document