Synthesis and Biological Evaluation of Novel Chromone+Donepezil Hybrids for Alzheimer’s Disease Therapy

2019 ◽  
Vol 16 (9) ◽  
pp. 815-820 ◽  
Author(s):  
Rim Malek ◽  
Bernard Refouvelet ◽  
Mohamed Benchekroun ◽  
Isabel Iriepa ◽  
Ignacio Moraleda ◽  
...  

Background: Many factors are involved in Alzheimer’s Disease (AD) such as amyloid plaques, neurofibrillary tangles, cholinergic deficit and oxidative stress. To counter the complexity of the disease the new approach for drug development is to create a single molecule able to act simultaneously on different targets. Objective: We conceived eight drug likeliness compounds targeting the inhibition of cholinesterases and the scavenging of radicals. Methods: We synthesised the new molecules by the Passerini multicomponent reaction and evaluated their inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) as well as their antioxidant activities by the Oxygen Radical Absorbance Capacity (ORAC) assay. The lipinski’s rule for drug likeness and in silico ADME prediction was also performed. Results: Compounds 4f [IC50 (EeAChE) = 0.30 μM; IC50 (eqBuChE) = 0.09 μM; ORAC = 0.64 TE] and 4h [IC50 (EeAChE) = 1 μM; IC50 (eqBuChE) = 0.03 μM; ORAC = 0.50 TE] were identified as hits for further development. Conclusion: The Passerini reaction allowed us the facile synthesis of ditarget molecules of interest for the treatment of AD.

2021 ◽  
Vol 17 (6) ◽  
pp. 1123-1130
Author(s):  
Qichen Pan ◽  
Yunchao Ban ◽  
Lijun Xu

Alzheimer’s disease (AD) is strongly associated with oxidative stress which can damage neural cells. Silibinin has shown potential antioxidative effects. However, due to its low solubility in water, silibinin provides low biological activity and bioavailability. Therefore, to increase its pharmacological effects, silibilin was encapsulated into human serum albumin (HSA) nanoparticles and well-characterized by DLS and TEM techniques. The antioxidant activity of silibinin-HSA nanoparticles was evaluated on LPS-induced oxidative stress in neuron-like cells (SH-SY5Y) through MTT, antioxidant activity and apoptotic assay. It was shown that the mean diameter of HSA and silibinin-HSA nanoparticles were 88 and 105 nm, respectively with a drug loading of 24.08%, drug encapsulation rate of 94.72%, and the yield of silibinin-HSA nanoparticles of around 83.41% and the HSA nano-formulation released silibinin for 15 h. The results displayed that cell viability was reduced by LPS (10 μg/mL), who’s also determined to stimulate oxidative stress and apoptosis. However, co-incubation of cells with silibinin (50 μg/mL) or silibinin-HSA nanoparticles led to the recovery of cell viability, activation of SOD and CAT, increase of GSH content, and reduction of ROS level, Caspase-3 activity and fragmentation of DNA. It was also indicated that the neuroprotective and antioxidant activities of silibinin-HAS nanoparticles was greater than free silibinin, indicating that using albumin can be a potential formulation approach for improving the antioxidant efficacy of silibinin.


Sign in / Sign up

Export Citation Format

Share Document