Drug Discovery and Molecular Dynamics: Methods, Applications and Perspective Beyond the Second Timescale

Author(s):  
Gerard Martínez-Rosell ◽  
Toni Giorgino ◽  
Matt J. Harvey ◽  
Gianni de Fabritiis
2018 ◽  
Author(s):  
Benjamin R. Jagger ◽  
Christoper T. Lee ◽  
Rommie Amaro

<p>The ranking of small molecule binders by their kinetic (kon and koff) and thermodynamic (delta G) properties can be a valuable metric for lead selection and optimization in a drug discovery campaign, as these quantities are often indicators of in vivo efficacy. Efficient and accurate predictions of these quantities can aid the in drug discovery effort, acting as a screening step. We have previously described a hybrid molecular dynamics, Brownian dynamics, and milestoning model, Simulation Enabled Estimation of Kinetic Rates (SEEKR), that can predict kon’s, koff’s, and G’s. Here we demonstrate the effectiveness of this approach for ranking a series of seven small molecule compounds for the model system, -cyclodextrin, based on predicted kon’s and koff’s. We compare our results using SEEKR to experimentally determined rates as well as rates calculated using long-timescale molecular dynamics simulations and show that SEEKR can effectively rank the compounds by koff and G with reduced computational cost. We also provide a discussion of convergence properties and sensitivities of calculations with SEEKR to establish “best practices” for its future use.</p>


2019 ◽  
Vol 25 (31) ◽  
pp. 3339-3349 ◽  
Author(s):  
Indrani Bera ◽  
Pavan V. Payghan

Background: Traditional drug discovery is a lengthy process which involves a huge amount of resources. Modern-day drug discovers various multidisciplinary approaches amongst which, computational ligand and structure-based drug designing methods contribute significantly. Structure-based drug designing techniques require the knowledge of structural information of drug target and drug-target complexes. Proper understanding of drug-target binding requires the flexibility of both ligand and receptor to be incorporated. Molecular docking refers to the static picture of the drug-target complex(es). Molecular dynamics, on the other hand, introduces flexibility to understand the drug binding process. Objective: The aim of the present study is to provide a systematic review on the usage of molecular dynamics simulations to aid the process of structure-based drug design. Method: This review discussed findings from various research articles and review papers on the use of molecular dynamics in drug discovery. All efforts highlight the practical grounds for which molecular dynamics simulations are used in drug designing program. In summary, various aspects of the use of molecular dynamics simulations that underline the basis of studying drug-target complexes were thoroughly explained. Results: This review is the result of reviewing more than a hundred papers. It summarizes various problems that use molecular dynamics simulations. Conclusion: The findings of this review highlight how molecular dynamics simulations have been successfully implemented to study the structure-function details of specific drug-target complexes. It also identifies the key areas such as stability of drug-target complexes, ligand binding kinetics and identification of allosteric sites which have been elucidated using molecular dynamics simulations.


Author(s):  
Lorenzo Casbarra ◽  
Piero Procacci

AbstractWe systematically tested the Autodock4 docking program for absolute binding free energy predictions using the host-guest systems from the recent SAMPL6, SAMPL7 and SAMPL8 challenges. We found that Autodock4 behaves surprisingly well, outperforming in many instances expensive molecular dynamics or quantum chemistry techniques, with an extremely favorable benefit-cost ratio. Some interesting features of Autodock4 predictions are revealed, yielding valuable hints on the overall reliability of docking screening campaigns in drug discovery projects.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 74
Author(s):  
Justin Spiriti ◽  
Chung F. Wong

Most early-stage drug discovery projects focus on equilibrium binding affinity to the target alongside selectivity and other pharmaceutical properties. Since many approved drugs have nonequilibrium binding characteristics, there has been increasing interest in optimizing binding kinetics early in the drug discovery process. As focal adhesion kinase (FAK) is an important drug target, we examine whether steered molecular dynamics (SMD) can be useful for identifying drug candidates with the desired drug-binding kinetics. In simulating the dissociation of 14 ligands from FAK, we find an empirical power–law relationship between the simulated time needed for ligand unbinding and the experimental rate constant for dissociation, with a strong correlation depending on the SMD force used. To improve predictions, we further develop regression models connecting experimental dissociation rate with various structural and energetic quantities derived from the simulations. These models can be used to predict dissociation rates from FAK for related compounds.


CrystEngComm ◽  
2022 ◽  
Author(s):  
ruibo ma ◽  
Lili Zhou ◽  
Yong-Chao Liang ◽  
Ze-an Tian ◽  
Yun-Fei Mo ◽  
...  

To investigate microstructural evolution and plastic deformation under tension conditions, the rapid solidification processes of Ni47Co53 alloy are first simulated by molecular dynamics methods at cooling rates of 1011, 1012...


Sign in / Sign up

Export Citation Format

Share Document