scholarly journals The Mechanism of Action of Praziquantel: Six Hypotheses

2018 ◽  
Vol 18 (18) ◽  
pp. 1575-1584 ◽  
Author(s):  
Charlotte M. Thomas ◽  
David J. Timson

Despite being one of the most commonly used drugs, the molecular mechanism of action of the anthelmintic praziquantel remains unknown. There are some unusual features of this drug. Critically, widespread resistance to praziquantel has not developed despite decades of use. Here, we set out some challenges in praziquantel research and propose some provocative hypotheses to address these. We suggest that praziquantel may have multiple pharmacologically relevant targets and the effects on these may synergise to produce an overall, detrimental effect on the parasite. Praziquantel also acts on a number of host proteins and we propose that these actions are important in the drug’s overall mechanism. Although the drug is largely used in the treatment of human and domestic animal worm infections, there is a considerable “grey literature” along with some academic studies which may have been overlooked. It appears that praziquantel may be effective against hydra. It may also be effective against some unicellular parasites such as Giardia spp. Further, scientific work on these understudied areas may be useful in understanding the molecular mechanism in Trematoda. The lack of widespread resistance suggests that praziquantel may act, at least in part, on a protein-protein interaction. Altered drug metabolism or enhanced drug efflux are the most likely ways resistance may arise. There is a critical need to understand the biochemical pharmacology of this drug in order to inform the discovery of the next generation of anthelmintic drugs.

2007 ◽  
Vol 5 (1) ◽  
pp. nrs.05012 ◽  
Author(s):  
Say Viengchareun ◽  
Damien Le Menuet ◽  
Laetitia Martinerie ◽  
Mathilde Munier ◽  
Laurent Pascual-Le Tallec ◽  
...  

The last decade has witnessed tremendous progress in the understanding of the mineralocorticoid receptor (MR), its molecular mechanism of action, and its implications for physiology and pathophysiology. After the initial cloning of MR, and identification of its gene structure and promoters, it now appears as a major actor in protein-protein interaction networks. The role of transcriptional coregulators and the determinants of mineralocorticoid selectivity have been elucidated. Targeted oncogenesis and transgenic mouse models have identified unexpected sites of MR expression and novel roles for MR in non-epithelial tissues. These experimental approaches have contributed to the generation of new cell lines for the characterization of aldosterone signaling pathways, and have also facilitated a better understanding of MR physiology in the heart, vasculature, brain and adipose tissues. This review describes the structure, molecular mechanism of action and transcriptional regulation mediated by MR, emphasizing the most recent developments at the cellular and molecular level. Finally, through insights obtained from mouse models and human disease, its role in physiology and pathophysiology will be reviewed. Future investigations of MR biology should lead to new therapeutic strategies, modulating cell-specific actions in the management of cardiovascular disease, neuroprotection, mineralocorticoid resistance, and metabolic disorders.


Author(s):  
Fui Fui Lem ◽  
Fernandes Opook ◽  
Dexter Jiunn Herng Lee ◽  
Fong Tyng Chee ◽  
Fahcina P. Lawson ◽  
...  

AbstractBackgroundThe emergence of COVID-19 as a pandemic has resulted in the need for urgent development of vaccines and drugs and the conduction of clinical trials to fight the outbreak. Because of the time constraints associated with the development of vaccines and effective drugs, drug repurposing and other alternative treatment methods have been used to treat patients that have been infected by the SARS-CoV-2 virus and have acquired COVID-19.ObjectiveThe objective of this systematic scoping review is to provide an overview of the molecular mechanism of action of repurposed drugs or alternative treatment medicines used to attenuate COVID-19 disease.Data SourcesThe research articles or grey literature, including theses, government reports, and official news online, were identified from 4 databases and 1 search engine. The full content of a total of 160 articles that fulfilled our inclusion criteria was analyzed and information about 6 drugs (ritonavir, lopinavir, oseltamivir, remdesivir, favipiravir, and chloroquine) and 4 traditional Chinese medicines (Shuang Huang Lian Kou Fu Ye, TCM combination of Bu Huan Jin Zheng Qi San and Da Yuan Yin, Xue Bi Jing Injection and Qing Fei Pai Du Tang) were extracted.ConclusionsAll of the repurposed drugs that have been used for the treatment of COVID-19 depend on the ability of the drug to inhibit the proliferation of the SARS-CoV-2 virus by binding to enzyme active sites, viral chain termination, or triggering of the molecular pathway, whereas traditional Chinese medicine has a pivotal role in triggering the inflammation pathway, such as the neuraminidase blocker, to fight the SARS-CoV-2 virus. This review provides an insight to experimental validation of drugs and alternative medicine used for the treatment and control of COVID-19.


2019 ◽  
Author(s):  
John Eaton ◽  
Richard A. Ruberto ◽  
Anneke Kramm ◽  
Vasanthi S. Viswanathan ◽  
Stuart Schreiber

<div><div><div><p>GPX4 represents a promising yet difficult-to-drug therapeutic target for the treatment of, among others, drug-resistant cancers. While most GPX4 inhibitors rely on a chloroacetamide moiety to modify covalently the protein’s catalytic selenocysteine residue, the discovery and mechanistic elucidation of structurally diverse GPX4-inhibiting molecules has uncovered novel electrophilic warheads that bind and inhibit GPX4. Here we report our discovery that diacylfuroxans can act as masked nitrile oxides that inhibit GPX4 covalently. These observations illuminate a novel molecular mechanism of action for biologically active furoxans and also suggest that nitrile oxides may be uniquely suited to targeting GPX4.</p></div></div></div>


2021 ◽  
Author(s):  
Yue Zhang ◽  
Xue Qi ◽  
Xiaoming Chen ◽  
Jinxi Zhang ◽  
Wenyue Zhang ◽  
...  

We explore the protective effect of dietary SeMet on the kidney tissue of broilers and determine its potential molecular mechanism of action.


Bone ◽  
2007 ◽  
Vol 41 (6) ◽  
pp. S2
Author(s):  
B Rauschemberger ◽  
P Cutini ◽  
M Sandoval ◽  
N Polini ◽  
V Massheimer

Sign in / Sign up

Export Citation Format

Share Document