Insights into the Structural Aspects of the mGlu Receptor Orthosteric Binding Site

2019 ◽  
Vol 19 (26) ◽  
pp. 2421-2446 ◽  
Author(s):  
Junliang Hao ◽  
Qi Chen

The amino terminal domain (ATD) of the metabotropic glutamate (mGlu) receptors contains the orthosteric glutamate recognition site, which is highly conserved across the eight mGlu receptor subtypes. In total, 29 X-ray crystal structures of the mGlu ATD proteins have been reported to date. These structures span across 3 subgroups and 6 subtypes, and include apo, agonist- and antagonist-bound structures. We will discuss the insights gained from the analysis of these structures with the focus on the interactions contributing to the observed group and subtype selectivity for select agonists. Furthermore, we will define the full expanded orthosteric ligand binding pocket (LBP) of the mGlu receptors, and discuss the macroscopic features of the mGlu ATD proteins.

1989 ◽  
Vol 35 (5) ◽  
pp. 721-725 ◽  
Author(s):  
T Frielle ◽  
M G Caron ◽  
R J Lefkowitz

Abstract The beta 1- and beta 2-adrenergic receptor subtypes are biochemically and functionally similar, because both receptors mediate the catecholamine-dependent activation of adenylate cyclase through the GTP-binding protein, Gs. Pharmacologically, the two receptors can be distinguished on the basis of their relative affinities for the agonists epinephrine and norepinephrine as well as their affinities for several selective antagonists. The primary structures of the human beta 1- and beta 2-adrenergic receptors have recently been deduced from the cloning of their genes and (or) cDNAs, revealing high sequence homology and a membrane topography of seven putative transmembrane regions similar to that of rhodopsin. Chimeric beta 1/beta 2-adrenergic receptor cDNAs have been constructed by site-directed mutagenesis and the chimeric RNA transcripts expressed in Xenopus laevis oocytes. The pharmacological properties of the expressed chimeric receptor proteins were assessed by radioligand binding utilizing subtype-selective agonists and antagonists. Apparently, several of the putative transmembrane regions contribute significantly to the determination of subtype selectivity, presumably by formation of a ligand-binding pocket, with determinants for agonist and antagonist binding being distinguishable.


2003 ◽  
Vol 307 (3) ◽  
pp. 897-905 ◽  
Author(s):  
Pari Malherbe ◽  
Vincent Mutel ◽  
Clemens Broger ◽  
Florent Perin-Dureau ◽  
John A. Kemp ◽  
...  

2012 ◽  
Vol 59 (2) ◽  
pp. 44-53
Author(s):  
M. Polakovičová ◽  
R. Čižmáriková

AbstractStructural understanding of subtype specific ligand-binding pocket variations and interactions of ligand with receptor may facilitate design of novel selective drugs. To gain insights into the subtype selectivity of β-blockers we performed flexible molecular docking study to analyze the interaction mode of cardioselective phenoxyaminopropanol blocker into the β1 and β2-adrenergic receptor. The binding site analysis reveals a strong identity between important amino acid residues and interactions with ligand in orthosteric catecholamine- binding pocket. The differences in the binding mode of selective ligand have been identified in the extracellular region of receptor subtypes.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Francine Acher ◽  
Giuseppe Battaglia ◽  
Hans Bräuner-Osborne ◽  
P. Jeffrey Conn ◽  
Robert Duvoisin ◽  
...  

Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors [347]) are a family of G protein-coupled receptors activated by the neurotransmitter glutamate [138]. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group-I (mGlu1 and mGlu5), Group-II (mGlu2 and mGlu3) and Group-III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading).Structurally, mGlu are composed of three juxtaposed domains: a core G protein-activating seven-transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine-rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi-lobed extracellular domain where glutamate binds. mGlu form constitutive dimers, cross-linked by a disulfide bridge. The structures of the VFTD of mGlu1, mGlu2, mGlu3, mGlu5 and mGlu7 have been solved [198, 271, 264, 399]. The structure of the 7 transmembrane (TM) domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organization similar to that of other GPCRs, although the helices appear more compacted [87, 429, 61]. Recent advances in cryo-electron microscopy have provided structures of full-length mGlu receptor dimers [189]. Studies have revealed the possible formation of heterodimers between either group-I receptors, or within and between group-II and -III receptors [88]. First well characterized in transfected cells, co-localization and specific pharmacological properties also suggest the existence of such heterodimers in the brain [266].[436, 143, 279]. Beyond heteromerization with other mGlu receptor subtypes, increasing evidence suggests mGlu receptors form heteromers and larger order complexes with class A GPCRs (reviewed in [138]). The endogenous ligands of mGlu are L-glutamic acid, L-serine-O-phosphate, N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Group-I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG [30] and antagonized by (S)-hexylhomoibotenic acid [232]. Group-II mGlu receptors may be activated by LY389795 [265], LY379268 [265], eglumegad [350, 430], DCG-IV and (2R,3R)-APDC [351], and antagonised by eGlu [168] and LY307452 [421, 103]. Group-III mGlu receptors may be activated by L-AP4 and (R,S)-4-PPG [128]. An example of an antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [183]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as ‘potentiators’ of an orthosteric agonist response, without significantly activating the receptor in the absence of agonist.


Sign in / Sign up

Export Citation Format

Share Document