Kaempferol as a Potential PAK4 Inhibitor in Triple Negative Breast Cancer: Extra Precision Glide Docking and Free Energy Calculation

2020 ◽  
Vol 17 (5) ◽  
pp. 682-695 ◽  
Author(s):  
Michael A. Arowosegbe ◽  
Oluwamuyiwa T. Amusan ◽  
Segun A. Adeola ◽  
Oluwatosin B. Adu ◽  
Israel A. Akinola ◽  
...  

Background: P-21 activating kinase 4 (PAK4) is implicated in poor prognosis of many human tumors, particularly in Triple Negative Breast Cancer (TNBC) progression. Studies have revealed the crucial role of PAK4 in cell proliferation, anchorage-independent growth and cell migration among other hallmarks of cancer. Thus, PAK4 is an attractive target for anti-TNBC drug design and development. In our research, we used in silico methods to investigate the inhibitory potentials of kaempferol against PAK4 as compared with co-crystallized 4T6 and a standard PAK4 inhibitor-KPT-9274. The ligands were docked into the ATP-binding site of the target enzyme and post-docking validations were calculated. Results: In the molecular docking results, kaempferol had higher affinity than the standard KPT-9274. However, the SP and XP docking scores for the co-crystallized 4T6 were the highest. The analyses of the docking showed a favorable interaction between kaempferol and the catalytic-important aminoacyl residues, especially GLU396, LEU398 and ASP458 in the ATP-binding site of PAK4 when compared with what was obtained in the 4T6-PAK4 complex. Molecular mechanics based MM-GBSA was used to validate docking results. The free energy calculations revealed that kaempferol may have a favorable biological activity. Furthermore, the druggability of each ligand was assessed using the QikProp module and the SwissADME online tool. Kaempferol possessed a propitious drug-like property when compared to the standard ligands. Conclusions: We, therefore, put forward a logical argument that kaempferol can be further evaluated as a potential PAK4 inhibitor in TNBC.

2020 ◽  
Vol 18 ◽  
Author(s):  
Opeyemi Iwaloye ◽  
Olusola Olalekan Elekofehinti ◽  
Babatomiwa Kikiowo ◽  
Emmanuel Ayo Oluwarotimi ◽  
Toyin Mary Fadipe

Background: P-21 activating kinase 4 (PAK4) is implicated in poor prognosis of many cancers, especially in the progression of Triple Negative Breast Cancer (TNBC). The present study was aimed at designing some potential drug candidates as PAK4 inhibitors for breast cancer therapy. Objective: This study aimed to finding novel inhibitors of PAK4 from natural compounds using computational approach. Methods: An e-pharmacophore model was developed from docked PAK4-coligand complex and used to screen over a thousand natural compounds downloaded from BIOFACQUIM and NPASS databases to match a minimum of 5 sites for selected (ADDDHRR) hypothesis. The robustness of the virtual screening method was accessed by well-established methods including EF, ROC, BEDROC, AUAC, and the RIE. Compounds with fitness score greater than one were filtered by applying molecular docking (HTVS, SP, XP and Induced fit docking) and ADME prediction. Using Machine learningbased approach QSAR model was generated using Automated QSAR. The computed top model kpls_des_17 (R2= 0.8028, RMSE = 0.4884 and Q2 = 0.7661) was used to predict the pIC50 of the lead compounds. Internal and external validations were accessed to determine the predictive quality of the model. Finally the binding free energy calculation was computed. Results: The robustness/predictive quality of the models were affirmed. The hits had better binding affinity than the reference drug and interacted with key amino acids for PAK4 inhibition. Overall, the present analysis yielded three potential inhibitors that are predicted to bind with PAK4 better than reference drug tamoxifen. The three potent novel inhibitors vitexin, emodin and ziganein recorded IFD score of -621.97 kcal/mol, -616.31 kcal/mol and -614.95 kcal/mol, respectively while showing moderation for ADME properties and inhibition constant. Conclusion: It is expected that the findings reported in this study may provide insight for designing effective and less toxic PAK4 inhibitors for triple negative breast cancer.


Drug Research ◽  
2021 ◽  
Author(s):  
Amir Shadboorestan ◽  
Parastoo Tarighi ◽  
Mahsa Koosha ◽  
Homa Faghihi ◽  
Mohammad Hossein Ghahremani ◽  
...  

Background Glucagon-like petide-1 (GLP-1) agonists such as liraglutide are widely employed in type 2 diabetes due to their glucose reducing properties and small risk of hypoglycemia. Recently, it has been shown that GLP-1agonists can inhibit breast cancer cells growth. Nonetheless, concerns are remained about liraglutide tumor promoting effects as stated by population studies. Material and Methods We evaluated the effects liraglutide on proliferation of MDA-MB-231 cells by MTT assay and then ATP-binding cassette (ABC) transporters expressions assessed by Real time PCR. Statistical comparisons were made using one-way analysis of variance followed by a post hoc Dunnett test. Results Here, we report that liraglutide can stimulate the growth of highly invasive triple negative cell line MDA-MB-231; which can be attributed to AMPK-dependent epithelial-mesenchymal transition (EMT) happening in MDA-MB-231 context. Toxicity effects were only observed with concentrations far above the serum liraglutide concentration. ATP-binding cassette (ABC) transporters expressions were upregulated, indicating the possible drug resistance and increased EMT. Conclusion In conclusion, these results suggest that liraglutide should be used with caution in patients who are suffering or have the personal history of triple negative breast cancer. However, more detailed studies are required to deepen understanding of liraglutide consequences in triple negative breast cancer. ▶Graphical Abstract.


2010 ◽  
Vol 8 (6) ◽  
pp. 16
Author(s):  
H.M. Heneghan ◽  
N. Miller ◽  
T. Paranjape ◽  
F.J. Slack ◽  
J.B. Weidhaas ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Nair Hariprasad Haritha ◽  
Akbar Nawab ◽  
Vinod Vijayakurup ◽  
Nikhil Ponnoor Anto ◽  
Vijayasteltar B. Liju ◽  
...  

BackgroundThe ongoing treatment modalities for breast cancer (BC) primarily rely on the expression status of ER, PR and HER-2 receptors in BC tissues. Our strategy of chemosensitization provides new insights to counter chemoresistance, a major obstacle that limits the benefits of chemotherapy of mammary cancers.MethodsBy utilizing a murine breast cancer model employing NSG mice bearing orthotopic triple-negative breast cancer (TNBC) xenografts, we have evaluated the ability of phytochemical curcumin in chemosensitizing BC to 5-Fluorouracil (5-FU) chemotherapy and the differential modulations of cellular events in response to this strategy, independent of their receptor status.ResultsA significant synergistic antitumor potential was observed in the murine model with a sub-optimal dose treatment of 5-FU plus curcumin, as evaluated by a reduction in the tumor-related parameters. We authenticated the pivotal role of thymidylate synthase (TS) in regulating the 5-FU–curcumin synergism using the TNBC pre-clinical model. Our study also confirmed the pharmacological safety of this chemotherapeutic plus phytoactive combination using acute and chronic toxicity studies in Swiss albino mice. Subsequently, the molecular docking analysis of curcumin binding to TS demonstrated the affinity of curcumin towards the cofactor-binding site of TS, rather than the substrate-binding site, where 5-FU binds. Our concomitant in vivo and in silico evidence substantiates the superior therapeutic index of this combination.ConclusionThis is the first-ever pre-clinical study portraying TS as the critical target of combinatorial therapy for mammary carcinomas and therefore we recommend its clinical validation, especially in TNBC patients, who currently have limited therapeutic options.


2010 ◽  
Author(s):  
Trupti S. Paranjape ◽  
Helen Heneghan ◽  
Cory Pelletier ◽  
Aaron Hoffman ◽  
Michael J. Kerin ◽  
...  

2019 ◽  
Author(s):  
Shanshan Deng ◽  
Hao Chen ◽  
Raisa Krutilina ◽  
Najah G. Albadari ◽  
Tiffany N. Seagroves ◽  
...  

2019 ◽  
Author(s):  
Shanshan Deng ◽  
Hao Chen ◽  
Raisa Krutilina ◽  
Najah G. Albadari ◽  
Tiffany N. Seagroves ◽  
...  

Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
AJ Robles ◽  
L Du ◽  
S Cai ◽  
RH Cichewicz ◽  
SL Mooberry

Sign in / Sign up

Export Citation Format

Share Document