Thiazolidine-2, 4-Diones as Non-Hepatotoxic Tri-action Drug Candidates: Design, Synthesis, Characterization, Biological Evaluation and Docking Studies

2020 ◽  
Vol 17 (9) ◽  
pp. 659-679
Author(s):  
Karuna S. Shukla ◽  
Shailendra Pandey ◽  
Pooja A. Chawla

Thiazolidine-2, 4-diones and their derivatives are a well-established chemical class of compounds that express their pharmacological actions through insulin sensitization and enhanced glucose utilization in peripheral tissues. In the current research different approaches have been employed to synthesize thiazolidine-2, 4-dione derivatives and these synthesized compounds were chemically characterized for the establishment of their chemical structures. A series of thiazolidine-2, 4-dione (TZD) derivatives, Scheme 1 (3A-3V) 22 compounds, were synthesized and characterized by FT-IR, 1H NMR and mass spectral analysis. The title compounds were screened for their in vitro and in vivo antidiabetic, antioxidant, and cytotoxicity studies. In vivo antihyperglycemic effect was assessed by measuring plasma glucose (PG) levels in alloxan-induced type II diabetic rat models. The synthesized TZD derivatives were evaluated for hepatotoxicity and pancreatic tissue integrity. Antioxidant activity was evaluated by the DPPH method and H2O2 method. Thiazolidinedione derivatives were subjected to predict free energy of binding towards target PPARγ, using rosiglitazone as the reference compound for molecular docking visualization through the FlexX docking program. Molecular docking studies are also performed for understanding the binding of a ligand to a receptor. The compound 3V 4-(5- (naphthalen-1-ylmethylene)-2, 4-dioxothiazolidin-3-yl) benzoic acid exhibited better blood glucoselowering activity than that of the standard drug rosiglitazone. Compound 3T and 3U exhibited potent antioxidant activity. Among the tested compounds for cytotoxicity using an MTT assay, compound 3H 5-(4-chlorobenzylidene)-2, 4-dioxothiazolidin-3-yl) benzoic acid exhibited better viability and cytotoxicity activity. From selected anti-diabetic targets, the proposed derivatives exhibited better interaction with PPARγ receptor, for example, while rosiglitazone showed a docking score of -19.891 kJ/mol, compound 3V exhibited highest docking score of -31.6617 kJ/mol. Computational molecular docking study demonstrated the selectivity and provided a binding model for the further refinement of this chemotype. Therefore, this series of thiazolidine-2, 4-diones derivatives (3A-3V) have considerable importance for development as a potential antihyperglycemic and hypolipidemic agents.

INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (09) ◽  
pp. 19-37
Author(s):  
Karuna S. Shukla ◽  
Shailendra Pandey ◽  
A Pooja Chawla

A series of eleven thiazolidine-2, 4-dione (TZD) derivatives, were synthesized and characterized by FT-IR, 1 H NMR and mass spectral analysis. All the synthesized TZD derivatives were screened for their in vitro and in vivo anti-diabetic and antioxidant, activities and cytotoxicity. In vivo antihyperglycemic effect was assessed by measuring plasma glucose (PG) levels in alloxan-induced type II diabetic rat models. The compound 4h exhibited better blood glucose lowering activity than the standard drug rosiglitazone. The synthesized TZD derivatives were evaluated for hepatotoxicity and pancreatic tissue studies. Antioxidant activity was evaluated by DPPH method and H2 O2 method. Compounds 4a and 4b exhibited potent antioxidant activity. Among the tested compounds for cytotoxicity using MTT assay method, compound 4i exhibited better viability and cytotoxicity activity. Thiazolidinedione derivatives were evaluated for their affinity towards target PPARg, using rosiglitazone as the reference compound molecular docking visualization through FlexX docking program. From selected anti-diabetic targets, the proposed derivatives exhibited better interaction with PPARγ receptor, where rosiglitazone showed docking score of -19.891 kJ/ mol, compound 4h exhibited highest docking score of -31.6068 kJ/mol. The study showed that all the studied compounds were showing higher docking score when compared to control drug rosiglitazone and it could be a remarkable starting point to evaluate structure activity relationships to develop new lead molecules with potential anti-diabetic activities.


2020 ◽  
Vol 17 ◽  
Author(s):  
Deepak Kumar Singh ◽  
Mayank Kulshreshtha ◽  
Yogesh Kumar ◽  
Pooja A Chawla ◽  
Akash Ved ◽  
...  

Background: The pyrazolines give the reactions of aliphatic derivatives, resembling unsaturated compounds in their behavior towards permanganate and nascent hydrogen. This nucleus has been associated with various biological activities including inflammatory. Thiazolinone is a heterocyclic compound that contains both sulfur and nitrogen atom with a carbonyl group in their structure.Thiazolinone and their derivatives have attracted continuing interest because of their various biological activities, such as anti-inflammatory, antimicrobial, anti-proliferative, antiviral, anticonvulsant etc. The aim of the research was to club pyrazoline nucleus with thiazolinone in order to have significantanti-inflammatory activity. The synthesized compounds were chemically characterized for the establishment of their chemical structures and to evaluate as anti-inflammatory agent. Method: In the present work, eight derivatives of substituted pyrazoline (PT1-PT8) were synthesized by a three step reaction.The compounds were subjected to spectral analysis by Infrared, Mass and Nuclear magnetic resonance spectroscopy and elemental analysis data. All the synthesized were evaluated for their in vivo anti-inflammatory activity. The synthesized derivatives were evaluated for their affinity towards target COX-1 and COX-2, using indomethacin as the reference compound molecular docking visualization through AutoDock Vina. Results: Compounds PT-1, PT-3, PT-4 and PT-8 exhibited significant anti-inflammatory activity at 3rd hour being 50.7%, 54.3%, 52.3% and 57% respectively closer to that of the standard drug indomethacin (61.9%).From selected anti-inflammatory targets, the synthesized derivatives exhibited better interaction with COX-1 and COX-2 receptor, where indomethacin showed docking score of -6.5 kJ/mol, compound PT-1 exhibited highest docking score of -9.1 kJ/mol for COX-1 and compound PT-8 having docking score of 9.4 kJ/mol for COX-2. Conclusion: It was concluded that synthesized derivatives have more interaction with COX-2 receptors in comparison to the COX-1 receptors because the docking score with COX-2 receptors were very good. It is concluded that the synthesized derivatives (PT-1 to PT-8) are potent COX-2 inhibitors.


2017 ◽  
Vol 14 (12) ◽  
pp. e1700295 ◽  
Author(s):  
Saghi Sepehri ◽  
Sepehr Soleymani ◽  
Rezvan Zabihollahi ◽  
Mohammad R. Aghasadeghi ◽  
Mehdi Sadat ◽  
...  

2021 ◽  
Vol 33 (11) ◽  
pp. 2755-2761
Author(s):  
Shaheen Sultana ◽  
P. Pandian ◽  
B. Rajkamal

The synthesis of novel indole derivatives 4a-o using a microwave assisted method via Schiff’s base and Mannich base reaction mechanism was described. Compounds 3a-c were synthesized via reaction of 2-amino benzothiazole with substituted isatin by Schiff base reaction mechanism. Also, indole derivatives 4a-o were synthesized via reaction of compounds 3a-c with substituted benzaldehydes by Mannich base reaction. The biological potentials of the newly synthesized indole derivatives were evaluated for their anthelmintic activity and in vitro anticancer activity by MTT assay. The anticancer activity results suggested that indole derivatives 4c-o have activity against MCF-7 and SKOV3 cells in comparison with doxorubicin as standard drug. Furthermore, the molecular docking studies of these novel derivatives of indole showed good agreement with the biological results when their binding pattern and affinity towards the active site of EGFR was also investigated.


2021 ◽  
Vol 17 ◽  
Author(s):  
Kariyappa N. Ankali ◽  
Javarappa Rangaswamy ◽  
Mallappa Shalavadi ◽  
Nagaraja Naik

Background: Iminostilbene and 1,2,3-triazole ring containing compounds are considered as beneficial substrates in drug design. Objectives: This study was aimed at the synthesis of novel series of iminostilbene linked 1,2,3- triazole pharmacophores (7c-n) by Cu(I) catalyzed 1,3 dipolar cycloaddition reaction between 5- (Prop-2-yn-1-yl)-5H-dibenzo[b,f]azepine (7b) and various substituted azidobenzene derivatives (3cn). Methods: The chemical structures of compounds were confirmed by 1 H NMR, 13C NMR, LC-MS and molecular docking studies were carried out through HEX docking software. Results: The in vivo anti anxiety capacity of the compounds was evaluated by using “elevated plus maze” (EPM), anxiety model. The results exhibited that compounds (7d, 7e, 7j and 7k) have a higher anti anxiety effect close to diazepam. The anti-inflammatory activities of the synthesized compounds were evaluated by “Carrageenan-induced rat paw edema” model, compounds (7b, 7c, 7d, 7f, and 7j) demonstrated statistically significant inflammatory activity. Molecular docking analysis revealed that compounds (7d, 7e and 7j) bound to GABA(A) proteins show more efficiency when compared to the other analogues in the series. Conclusion: These results suggest that compounds (7b, 7c, 7d, 7e, 7f, and 7j) can be considered as novel candidates for anti-anxiety and anti-inflammatory agents. Moreover, docking method was used to elucidate anti-anxiety effect of compounds. This study furnished insight into the molecular interactions of synthesized compounds with their physiological targets, and the potential to develop bioactive heterocyclic compounds.


2020 ◽  
Author(s):  
Mohsinul Mulk Bacha ◽  
Humaira Nadeem ◽  
Shafiq Ur Rehman ◽  
Sadia Sarwar ◽  
Aqeel Imran ◽  
...  

Abstract In diabetes, increased accumulation of sorbitol has been associated with diabetic complications through polyol pathway. Aldose reductase (AR) is one of the key factors involved in reduction of glucose to sorbitol, thereby its inhibition is considered to be important for the management of diabetic complications. In the present study, a series of seven 4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetamide derivatives 3(a-g) were synthesized by the reaction of 5-(4-hydroxy-3-methoxybenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetic acid (2a) and 5-(4-methoxybenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetic acid (2b) with different amines. The synthesized compounds 3(a-g) were investigated for their in vitro aldehyde reductase (ALR1) and aldose reductase (ALR2) enzyme inhibitory potential. Compound 3c, 3d, 3e, and 3f showed ALR1 inhibition at lower micromolar concentration whereas all the compounds were more active than the standard inhibitor valproic acid. Most of the compounds were active against ALR2 but compound 3a and 3f showed higher inhibition than the standard drug sulindac. Overall the most potent compound against aldose reductase was 3f with an inhibitory concentration of 0.12 ± 0.01 µM. In vitro results showed that vanillin derivatives exhibited better activity against both aldehyde reductase and aldose reductase. The molecular docking studies were carried out to investigate the binding affinities of synthesized derivatives with both ALR1 and ALR2.


2018 ◽  
Vol 5 (1) ◽  
pp. 28-32
Author(s):  
Amuthavalli A ◽  
Prakash B ◽  
Velmurugan R

New hetero annulated indoles were synthesized and structurally characterized by spectral means. In order to understand the nature of interactions of these molecules, we carried out molecular docking studies using the protein kinase CK2 inhibitors. The docking results provided some useful information for the futuredesign of more potent inhibitors. The in vitro cytotoxicity was evaluated for all the new compounds by MTT assay against HeLa and compared with the standard drug ellipticine. All the compounds showed moderate to potent activity against the cell lines. The preliminary structure–activity relationships were carried out.


2021 ◽  
Vol 22 (19) ◽  
pp. 10396
Author(s):  
Maged A. Aziz ◽  
Wesam S. Shehab ◽  
Ahmed A. Al-Karmalawy ◽  
Ahmed F. EL-Farargy ◽  
Magda H. Abdellattif

Novel candidates of 3-(4-(thiophen-2-yl)-pyridin/pyran/pyrimidin/pyrazol-2-yl)-1H-indole derivatives (2–12) were designed by pairing the pyridine/pyrane/pyrimidine/pyrazole heterocycles with indole and thiophene to investigate their potential activities as (2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) inhibitors. The purpose of these derivatives’ modification is to create high-efficiency antioxidants, especially against ABTS, as a result of the efficiency of this set of key heterocycles in the inhibition of ROS. Herein, 2D QSAR modeling was performed to recommend the most promising members for further in vitro investigations. Furthermore, the pharmacological assay for antioxidant activity evaluation of the yielded indole-based heterocycles was tested against ABTS (2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid); by utilizing ascorbic acid as the standard. Candidate 10 showed higher antioxidant activity (IC50 = 28.23 μg/mL) than ascorbic acid itself which achieved (IC50 = 30.03 μg/mL). Moreover, molecular docking studies were performed for the newly designed and synthesized drug candidates to propose their mechanism of action as promising cytochrome c peroxidase inhibitors compared to ascorbic acid as a reference standard. Our findings could be promising in the medicinal chemistry scope for further optimization of the newly designed and synthesized compounds regarding the introduced structure-activity relationship study (SAR) in order to get a superior antioxidant lead compound in the near future.


Sign in / Sign up

Export Citation Format

Share Document